Programming languages — C

ABSTRACT

(Cover sheet to be provided by ISO Secretariat.)

This International Standard specifies the form and establishes the interpretation of
programs expressed in the programming language C. Its purpose is to promote
portability, reliability, maintainability, and efficient execution of C language programs on

a variety of computing systems.

Clauses are included that detail the C language itself and the contents of the C language
execution library. Annexes summarize aspects of both of them, and enumerate factors
that influence the portability of C programs.

Although this International Standard is intended to guide knowledgeable C language
programmers as well as implementors of C language translation systems, the document
itself is not designed to serve as a tutorial.

http://www.dator8.info

Foreword

ISO (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized system for worldwide
standardization. National bodies that are member of ISO or IEC participate in the
development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. 1ISO and IEC
technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with 1ISO and IEC, also
take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC
Directives, Part 3. Accordingly, annexes F and | form a normative part of this standard;
this foreword, the introduction, notes, footnotes, examples, annexes A, B, C, D, E, G, H,
J, K, the bibliography, and the index are for information only.

In the field of information technology, ISO and IEC have established a joint technical
committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical
committee are circulated to national bodies for voting. Publication as an International
Standard requires approval by at least 75% of the national bodies casting a vote.

International Standard ISO/IEC 9899 was prepared by Joint Technical Committee
ISO/IEC JTC 1, “Information Technology”, subcommittee 22, “Programming
languages, their environments and system software interfaces”.

http://www.dator8.info

Introduction

With the introduction of new devices and extended character sets, new features may be
added to this International Standard. Subclauses in the language and library clauses warn
implementors and programmers of usages which, though valid in themselves, may
conflict with future additions.

Certain features arebsolescent which means that they may be considered for
withdrawal in future revisions of this International Standard. They are retained because
of their widespread use, but their use in new implementations (for implementation
features) or new programs (for language [6.11] or library features [7.26]) is discouraged.

This International Standard is divided into four major subdivisions:

— the introduction and preliminary elements;

— the characteristics of environments that translate and execute C programs;
— the language syntax, constraints, and semantics;

— the library facilities.

Examples are provided to illustrate possible forms of the constructions described.
Footnotes are provided to emphasize consequences of the rules described in that
subclause or elsewhere in this International Standard. References are used to refer to
other related subclauses. Recommendations are provided to give advice or guidance to
implementors. Annexes provide additional information and summarize the information
contained in this International Standard. A bibliography lists documents that were
referred to during the preparation of the standard.

The language clause (clause 6) is derived from “The C Reference Manual”.
The library clause (clause 7) is based ornl@®®#4 /usr/group Standard

http://www.dator8.info

Contents
1. Scope
2. Normative references .
3. Terms and definitions .
4. Conformance
5.

Environment . .

5.1 Conceptual models oo
5.1.1 Translation environment .
5.1.2 Execution environments .

5.2 Environmental considerations .
5.2.1 Character sets .

5.2.2 Character display semantlcs :

5.2.3 Signals and interrupts .
5.2.4 Environmental limits

6. Language .
6.1 Notatron
6.2 Concepts . .
6.2.1 Scopes of |dent|f|ers
6.2.2 Linkages of identifiers .
6.2.3 Name spaces of identifiers .

6.2.4 Storage durations of objects .

6.2.5 Types
6.2.6 Representatrons of types

6.2.7 Compatible type and composite type .

6.3 Conversions . . .
6.3.1 Arithmetic operands
6.3.2 Other operands.
6.4 Lexical elements.
6.4.1 Keywords .
6.4.2 Identifiers . . .
6.4.3 Universal character names.
6.4.4 Constants .
6.4.5 String literals
6.4.6 Punctuators .
6.4.7 Header names . .
6.4.8 Preprocessing numbers .
6.4.9 Comments
6.5 Expressions.
6.5.1 Primary expressrons
6.5.2 Postfix operators .
6.5.3 Unary operators

http://www.dator8.info

6.6
6.7

6.8

6.9

6.10

6.5.4 Cast operators .

6.5.5 Multiplicative operators
6.5.6 Additive operators

6.5.7 Bitwise shift operators.
6.5.8 Relational operators.

6.5.9 Equality operators

6.5.10 BitwiseAND operator .
6.5.11 Bitwise exclusiv®R operator .
6.5.12 Bitwise inclusiv®©R operator
6.5.13 LogicalAND operator

6.5.14 LogicalOR operator .
6.5.15 Conditional operator.
6.5.16 Assignment operators.
6.5.17 Comma operator .
Constant expressions.

Declarations Coe e
6.7.1 Storage-class specifiers .
6.7.2 Type specifiers .

6.7.3 Type qualifiers .

6.7.4 Function specifiers .

6.7.5 Declarators

6.7.6 Type names .

6.7.7 Type definitions

6.7.8 Initialization

Statements . Ce e
6.8.1 Labeled statements. .

6.8.2 Compound statement, or block . .

6.8.3 Expression and null statements.
6.8.4 Selection statements .
6.8.5 Iteration statements .

6.8.6 Jump statements .

External definitions .

6.9.1 Function definitions . .
6.9.2 External object definitions .
Preprocessing directives .

6.10.1 Conditional inclusion

6.10.2 Source file inclusion.

6.10.3 Macro replacement .

6.10.4 Line control

6.10.5 Error directive .

6.10.6 Pragma directive .

6.10.7 Null directive .o
6.10.8 Predefined macro names .
6.10.9 Pragma operator .

71
72
72
74
75
76
1
77
78
78
78
79
80
82
84

. 86

87
88
96

. 100

. 102

.. 109
. 110

. 112

. 119

. . 119
. 120

. 120

. 121

. 123

. 125

. . 129
.. 129
. 132

. . 133
. 135

. 136

. 138

. 144

. 145

. 145

. . 146
. 146

. 147

6.11

. Library

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9
7.10
7.11

7.12

Future language directions . .
6.11.1 Character escape sequences
6.11.2 Storage-class specifiers .
6.11.3 Function declarators.

6.11.4 Function definitions .

6.11.5 Pragma directives.

Introductlon

7.1.1 Definitions of terms

7.1.2 Standard headers.

7.1.3 Reserved identifiers.

7.1.4 Use of library functions
Diagnosticsassert.h>

7.2.1 Program diagnostics.

Complex arithmetiecomplex.h>

7.3.1 Introduction

7.3.2 Conventions .

7.3.3 Branchcuts . . . :
7.3.4 TheCX_LIMITED RANGEpragma :
7.3.5 Trigonometric functions . .
7.3.6 Hyperbolic functions

7.3.7 Exponential and logarithmic functlons
7.3.8 Power and absolute-value functions .
7.3.9 Manipulation functions

Character handlingctype.h>

7.4.1 Character testing functions.

7.4.2 Character case mapping functions
Errors<errno.h> :

Floating-point envwonmemifenv h>

7.6.1 TheFENV ACCES$ragma :

7.6.2 Exceptions -

7.6.3 Rounding .

7.6.4 Environment . .

Characteristics of floating typeﬁoat h>
Format conversion of integer typdattypes.h>
7.8.1 Macros for format specifiers .

7.8.2 Conversion functions for greatest- W|dth mteger types

Alternative spellingsiso646.h>

Sizes of integer typedimits.h>
Localizatiorclocale.h>

7.11.1 Locale control . .
7.11.2 Numeric formatting conventlon |an|ry
Mathematicsmath.h> .

7.12.1 Treatment of error condltlons

. . 148
. 148
. 148
. 148
. 148
. 148

. .149
. . 149
. 149

. 150

. . 151
. 151

. 154

. . 154
. 155

. 155

. 156

. . 156
. 156
. 157

. . 159
. 162
. 162

. 164

. 167
.. 167
. 170

. 172
. 173

. 175

. 176
.178

. . 180
.. 182
. 183
. 183

185

. 187

. 188

. 189

. .190
. 191
. . 196
. 198

7.13

7.14

7.15

7.16

7.17
7.18

7.19

7.20

7.12.2 TheFP_CONTRACPragma

7.12.3 Classification macros .

7.12.4 Trigonometric functions .

7.12.5 Hyperbolic functions

7.12.6 Exponential and logarithmic functlons
7.12.7 Power and absolute-value functions.
7.12.8 Error and gamma functions.

7.12.9 Nearest integer functions

7.12.10 Remainder functions .

7.12.11 Manipulation functions

7.12.12 Maximum, minimum, and posmve dn‘ference functlons

7.12.13 Floating multiply-add .

7.12.14 Comparison macros.

Nonlocal jumpssetjmp.h>

7.13.1 Save calling environment

7.13.2 Restore calling environment .

Signal handlingsignal.h> :

7.14.1 Specify signal handllng .

7.14.2 Send signal . .

Variable argumentsstdarg.h> : :
7.15.1 Variable argument list access macros .
Boolean type and valugstdbool.h>

Common definitionsstddef.h>

Integer typesstdint.h>

7.18.1 Integer types. .

7.18.2 Limits of specified- W|dth mteger types
7.18.3 Limits of other integer types .

7.18.4 Macros for integer constants .
Input/outpukstdio.h>

7.19.1 Introduction .

7.19.2 Streams.

7.19.3 Files .

7.19.4 Operations on flles .

7.19.5 File access functions . .
7.19.6 Formatted input/output functlons :
7.19.7 Character input/output functions
7.19.8 Direct input/output functions .

7.19.9 File positioning functions.

7.19.10 Error-handling functions .

General utilitiesstdlib.h> .

7.20.1 String conversion functions.

7.20.2 Pseudo-random sequence generation functlons.

7.20.3 Memory management functions.
7.20.4 Communication with the environment .

. 199
. 199
. 202
. . 204
. 206
. 212
. 214
. 215
. 219
. 220

222

. 224

. 224

. 228

. 228

. 229

. 231

. 232

. . 233
. . 234
. 234

. 238

. 239

. 240

. . 240
. 242

. 244

. 245

. 247

. 247

. 249

. .250
. 252

. . 254
. 258

. 280

. 285

. 286

. 289

.. 291
.. 291
. 296
.. 297
. 299

7.21

71.22

7.23

7.24

7.25

7.26

7.20.5 Searching and sorting utilities.

7.20.6 Integer arithmetic functions.

7.20.7 Multibyte character functions .

7.20.8 Multibyte string functions

String handlingstring.h> .

7.21.1 String function conventions.

7.21.2 Copying functions

7.21.3 Concatenation functions.

7.21.4 Comparison functions .

7.21.5 Search functions .

7.21.6 Miscellaneous functions .

Type-generic maitgmath.h>

7.22.1 Type-generic macros .

Date and timetime.h>

7.23.1 Components of time. .

7.23.2 Time manipulation functions .

7.23.3 Time conversion functions . .

Extended multibyte and wide-character utllrﬁm:har h>

7.24.1 Introduction . .

7.24.2 Formatted wide- character mput/output functrons

7.24.3 Wide-character input/output functions .

7.24.4 General wide-string utilities. .

7.24.5 Wide-character time conversion functlons : .

7.24.6 Extended multibyte and wide-character conversion
utilities

Wide-character classrfrcatron and mapprng utrlmwstype h>

7.25.1 Introduction . :

7.25.2 Wide-character classrfrcatron utrlrtres

7.25.3 Wide-character mapping utilities

Future library directions. .

7.26.1 Complex arrthmetrscomplex h>

7.26.2 Character handlingctype.h>

7.26.3 Error<errno.h> :

7.26.4 Format conversion of mteger typmsttypes h>

7.26.5 Localizatiorxlocale.h> C e e

7.26.6 Signal handlingsignal.h> .o

7.26.7 Boolean type and valuestdbool.h>

7.26.8 Integer typesstdint.h>

7.26.9 Input/outpukstdio.h>

7.26.10 General utilitiesstdlib.h>

7.26.11 String handlingstring.h> :

7.26.12 Extended multibyte and wide- character utrlrtres
<wchar.h>

. 302

. 304

. 305

. 307

... 309
. 309

. ..309
. 311

. 312

. . 314
. 317

. 319

. 319

. 322

.. 322
. 323

. . 328
. 336
. . 336
. 337
. 354

. . 359
. 373

. 375

381

. . 381
. 382
. 387

. .390
. 390
. 390

. 390

390

. ..390
... 390
. 391
. 391
.. 391
. 391
. 391

. 391

7.26.13 Wide-character classification and mapping utilities
<wctype.h>

Annex A (informative) Language syntax summary .

Al
A2
A3

Lexical grammar
Phrase structure grammar
Preprocessing directives

Annex B (informative) Library summary

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9
B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17
B.18
B.19
B.20
B.21
B.22
B.23
B.24

Diagnosticsassert.h>

Complex<complex.h>

Character handlingctype.h>

Errors<errno.h> :

Floating-point envrronmemfenv h>
Characteristics of floating typefloat.h>
Format conversion of integer typesttypes.h>
Alternative spellingsiso646.h> .
Sizes of integer typedimits.h>
Localizatior<locale.h>
Mathematicsmath.h>

Nonlocal jumpssetjmp.h>

Signal handlingsignal.h>

Variable argumentsstdarg.h>

Boolean type and valuestdbool.h>

Common definitionsstddef.h>

Integer typesstdint.h>

Input/outpukstdio.h>

General utilitiexstdlib.h>

String handling:string.h>

Type-generic matktgmath.h>

Date and timetime.h> :

Extended multibyte and wide- character utrlrtw\ﬂ:har h>
Wide-character classification and mapping utilkiestype.h>

Annex C (informative) Sequence points.

Annex D (informative) Formal model of sequence points .

D.1
D.2
D.3
D.4
D.5

Introduction

Basic concepts .
Operation of the model .
Application .

Examples

Annex E (informative) Implementation limits.

Annex F (normative) IEC 60559 floating-point arithmetic .

F.1

Introduction

Vi

. 391

. 392

. .392
. 397

. 404

. 406

. 406

. . 406
. 408

. . 408
. . 408
. . 409
. 409
. 410

. 410

. 410

.. 411
. 415

. . 415
. . 415
. 416

. 416

. 416

. 417
. 419

. 420

. 421

. . 421
. 422

424

. 426

. 427
427
. 427
. 429
.432
.433

. 442

. 444
.444

F.2
F.3
F.4
F.5
F.6
F.7
F.8
F.9

Annex G (informative) IEC 60559-compatible complex arithmetic

G.1
G.2
G.3
G4
G.5
G.6

Types

Operators and functlons
Floating to integer conversion .
Binary-decimal conversion.
Contracted expressions.
Environment

Optimization .
Mathematicsmath.h>

Introduction

Types

Conversions

Binary operators .

Complex arlthmetlscomplex h>
Type-generic matktgmath.h>

Annex H (informative) Language independent arithmetic .

H.1
H.2
H.3

Annex | (normative) Universal character names for identifiers .

Introduction
Types
Notification .

Annex J (informative) Common warnings .

Annex K (informative) Portability issues

K.1
K.2
K.3
K.4
K.5

Unspecified behavior .
Undefined behavior
Implementation-defined behaV|or
Locale-specific behavior
Common extensions .

Bibliography

Index

Vil

. .444
. . 445
. 447

. 447

. 447
447

. .450
. 454

. 467
. 467

. .467
. 467

. .468
. 473

. 480

. 481
.481

. .481
.484

. 487
. 489

. 490
. 490
. . 492
. 505
. 511
. 512

.515
517

viii

1.

Programming languages — C

Scope

This International Standard specifies the form and establishes the interpretation of
programs written in the C programming langu&gé. specifies

the representation of C programs;

the syntax and constraints of the C language;

the semantic rules for interpreting C programs;

the representation of input data to be processed by C programs;

the representation of output data produced by C programs;

the restrictions and limits imposed by a conforming implementation of C.

This International Standard does not specify

the mechanism by which C programs are transformed for use by a data-processing
system;

the mechanism by which C programs are invoked for use by a data-processing
system;

the mechanism by which input data are transformed for use by a C program;

the mechanism by which output data are transformed after being produced by a C
program;

the size or complexity of a program and its data that will exceed the capacity of any
specific data-processing system or the capacity of a particular processor;

all minimal requirements of a data-processing system that is capable of supporting a
conforming implementation.

1)

This International Standard is designed to promote the portability of C programs among a variety of
data-processing systems. It is intended for use by implementors and programmers.

General 1

2 Committee Draft — August 3, 1998 WG14/N843

2. Normative references

The following normative documents contain provisions which, through reference in this
text, constitute provisions of this International Standard. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply.
However, parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the normative
documents indicated below. For undated references, the latest edition of the normative
document referred to applies. Members of ISO and IEC maintain registers of currently
valid International Standards.

ISO/IEC 646:1991,Information technology —SO 7-bit coded character set for
information interchange

ISO/IEC 2382-1:1993Information technology — Vocabulary — Part 1: Fundamental
terms

ISO 4217:1995Codes for the representation of currencies and funds

ISO 8601:1988Data elements and interchange formats — Information interchange —
Representation of dates and times

ISO/IEC 10646:1993,Information technology — Universal Multiple-Octet Coded
Character Set (UCS)

IEC 60559:1989Binary floating-point arithmetic for microprocessor systems, second
edition(previously designated IEC 559:1989).

3. Terms and definitions

For the purposes of this International Standard, the following definitions apply. Other
terms are defined where they appeaitatic type or on the left side of a syntax rule.
Terms explicitly defined in this International Standard are not to be presumed to refer
implicitly to similar terms defined elsewhere. Terms not defined in this International
Standard are to be interpreted according to ISO/IEC 2382-1.

3.1

alignment

requirement that objects of a particular type be located on storage boundaries with
addresses that are particular multiples of a byte address

3.2

argument

actual argument

actual parameter (deprecated)

expression in the comma-separated list bounded by the parentheses in a function call
expression, or a sequence of preprocessing tokens in the comma-separated list bounded
by the parentheses in a function-like macro invocation

2 General 3.2

WG14/N843 Committee Draft — August 3, 1998 3

3.3

bit

unit of data storage in the execution environment large enough to hold an object that may
have one of two values

NOTE It need not be possible to express the address of each individual bit of an object.

3.4

byte

addressable unit of data storage large enough to hold any member of the basic character
set of the execution environment

NOTE 1 Itis possible to express the address of each individual byte of an object uniquely.

NOTE 2 A byte is composed of a contiguous sequence of bits, the number of which is implementation-
defined. The least significant bit is called kw-order bit the most significant bit is called théh-order
bit.

3.5
character
bit representation that fits in a byte

3.6

constraints

restrictions, both syntactic and semantic, by which the exposition of language elements is
to be interpreted

3.7

correctly rounded result

a representation in the result format that is nearest in value, subject to the effective
rounding mode, to what the result would be given unlimited range and precision

3.8

diagnostic message

message belonging to an implementation-defined subset of the implementation’s message
output

3.9

forward references

references to later subclauses of this International Standard that contain additional
information relevant to this subclause

3.10

implementation

a particular set of software, running in a particular translation environment under
particular control options, that performs translation of programs for, and supports
execution of functions in, a particular execution environment

3.3 General 3.10

4 Committee Draft — August 3, 1998 WG14/N843

3.11
implementation-defined behavior
unspecified behavior where each implementation documents how the choice is made

EXAMPLE An example of implementation-defined behavior is the propagation of the high-order bit
when a signed integer is shifted right.

3.12
implementation limits
restrictions imposed upon programs by the implementation

3.13

locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each
implementation documents

EXAMPLE An example of locale-specific behavior is whetheridt@wver function returns true for
characters other than the 26 lowercase Latin letters.

3.14

multibyte character

sequence of one or more bytes representing a member of the extended character set of
either the source or the execution environment

NOTE The extended character set is a superset of the basic character set.

3.15

object

region of data storage in the execution environment, the contents of which can represent
values

NOTE When referenced, an object may be interpreted as having a particular type; see 6.3.2.1.

3.16

parameter

formal parameter

formal argument (deprecated)

object declared as part of a function declaration or definition that acquires a value on
entry to the function, or an identifier from the comma-separated list bounded by the
parentheses immediately following the macro name in a function-like macro definition

3.17

recommended practice

specifications that are strongly recommended as being in keeping with the intent of the
standard, but that may be impractical for some implementations

3.11 General 3.17

WG14/N843 Committee Draft — August 3, 1998 5

3.18

undefined behavior

behavior, upon use of a nonportable or erroneous program construct, of erroneous data, or
of indeterminately valued objects, for which this International Standard imposes no
requirements

NOTE Possible undefined behavior ranges from ignoring the situation completely with unpredictable

results, to behaving during translation or program execution in a documented manner characteristic of the
environment (with or without the issuance of a diagnostic message), to terminating a translation or
execution (with the issuance of a diagnostic message).

EXAMPLE An example of undefined behavior is the behavior on integer overflow.

3.19

unspecified behavior

behavior where this International Standard provides two or more possibilities and
imposes no requirements on which is chosen in any instance

EXAMPLE An example of unspecified behavior is the order in which the arguments to a function are
evaluated.

Forward references: bitwise shift operators (6.5.7), expressions (6.5), function calls
(6.5.2.2), thaslower function (7.4.1.6), localization (7.11).

4. Conformance

In this International Standard, “shall” is to be interpreted as a requirement on an
implementation or on a program; conversely, “shall not” is to be interpreted as a
prohibition.

If a “shall” or “shall not” requirement that appears outside of a constraint is violated, the
behavior is undefined. Undefined behavior is otherwise indicated in this International
Standard by the words “undefined behavior” or by the omission of any explicit definition
of behavior. There is no difference in emphasis among these three; they all describe
“behavior that is undefined”.

A program that is correct in all other aspects, operating on correct data, containing
unspecified behavior shall be a correct program and act in accordance with 5.1.2.3.

The implementation shall not successfully translate a preprocessing translation unit
containing a#error preprocessing directive unless it is part of a group skipped by
conditional inclusion.

A strictly conforming progranshall use only those features of the language and library
specified in this International Stand&tdlt shall not produce output dependent on any
unspecified, undefined, or implementation-defined behavior, and shall not exceed any
minimum implementation limit.

3.17 General 4

6 Committee Draft — August 3, 1998 WG14/N843

The two forms otonforming implementatioare hosted and freestanding.cénforming

hosted implementatioshall accept any strictly conforming program. cAnforming
freestanding implementatioshall accept any strictly conforming program that does not
use complex types and in which the use of the features specified in the library clause
(clause 7) is confined to the contents of the standard head&rat.h>
<is0646.h> , <limits.h> , <stdarg.h> , <stdbool.h> , <stddef.h> , and
<stdint.h> . A conforming implementation may have extensions (including additional
library functions), provided they do not alter the behavior of any strictly conforming
program®)

A conforming progranis one that is acceptable to a conforming implementétion.

An implementation shall be accompanied by a document that defines all implementation-
defined and locale-specific characteristics and all extensions.

Forward references: conditional inclusion (6.10.1), characteristics of floating types
<float.h> (7.7), alternative spellingsiso646.h> (7.9), sizes of integer types
<limits.h> (7.10), variable argumentstdarg.h> (7.15), boolean type and values
<stdbool.h> (7.16), common definitions<stddef.h> (7.17), integer types
<stdint.h> (7.18).

2) A strictly conforming program can use conditional features (such as those in annex F) provided the
use is guarded by#ifdef directive with the appropriate macro. For example:

#ifdef __STDC_IEC_559_ _ /* FE_UPWARD defined */
o
fesetround(FE_UPWARD);
T |

#endif

3) This implies that a conforming implementation reserves no identifiers other than those explicitly
reserved in this International Standard.

4) Strictly conforming programs are intended to be maximally portable among conforming
implementations. Conforming programs may depend upon nonportable features of a conforming
implementation.

4 General 4

WG14/N843 Committee Draft — August 3, 1998 7

5. Environment

An implementation translates C source files and executes C programs in two data-
processing-system environments, which will be calledttheslation environmenand

the execution environmenmt this International Standard. Their characteristics define and
constrain the results of executing conforming C programs constructed according to the
syntactic and semantic rules for conforming implementations.

Forward references: In this clause, only a few of many possible forward references
have been noted.

5.1 Conceptual models
5.1.1 Translation environment

5.1.1.1 Program structure

A C program need not all be translated at the same time. The text of the program is kept
in units calledsource files (or preprocessing filgsin this International Standard. A
source file together with all the headers and source files included via the preprocessing
directive#include is known as g@reprocessing translation uniAfter preprocessing, a
preprocessing translation unit is callettamslation unit Previously translated translation

units may be preserved individually or in libraries. The separate translation units of a
program communicate by (for example) calls to functions whose identifiers have external
linkage, manipulation of objects whose identifiers have external linkage, or manipulation
of data files. Translation units may be separately translated and then later linked to
produce an executable program.

Forward references: conditional inclusion (6.10.1), linkages of identifiers (6.2.2),
source file inclusion (6.10.2), external definitions (6.9), preprocessing directives (6.10).

5.1.1.2 Translation phases

The prc)ecedence among the syntax rules of translation is specified by the following
phases.

1. Physical source file multibyte characters are mapped to the source character set
(introducing new-line characters for end-of-line indicators) if necessary. Trigraph
sequences are replaced by corresponding single-character internal representations.

2. Each instance of a backslash charadtg¢rirfimediately followed by a new-line
character is deleted, splicing physical source lines to form logical source lines. If,
as a result, a character sequence that matches the syntax of a universal character
name is produced, the behavior is undefined. Only the last backslash on any
physical source line shall be eligible for being part of such a splice. A source file
that is not empty shall end in a new-line character, which shall not be immediately
preceded by a backslash character before any such splicing takes place.

5) Implementations shall behave as if these separate phases occur, even though many are typically folded
together in practice.

5 Environment 51.1.2

8 Committee Draft — August 3, 1998 WG14/N843

3. The source file is decomposed into preprocessing t8kand sequences of
white-space characters (including comments). A source file shall not end in a
partial preprocessing token or in a partial comment. Each comment is replaced by
one space character. New-line characters are retained. Whether each nhonempty
sequence of white-space characters other than new-line is retained or replaced by
one space character is implementation-defined.

4. Preprocessing directives are executed, macro invocations are expanded, and
_Pragma unary operator expressions are executed. If a character sequence that
matches the syntax of a universal character name is produced by token
concatenation (6.10.3.3), the behavior is undefinediindlude preprocessing
directive causes the named header or source file to be processed from phase 1
through phase 4, recursively. All preprocessing directives are then deleted.

5. Each source character set member, escape sequence, and universal character name
in character constants and string literals is converted to the corresponding member
of the execution character set; if there is no corresponding member, it is converted
to an implementation-defined member.

Adjacent string literal tokens are concatenated.

White-space characters separating tokens are no longer significant. Each
preprocessing token is converted into a token. The resulting tokens are
syntactically and semantically analyzed and translated as a translation unit.

8. All external object and function references are resolved. Library components are
linked to satisfy external references to functions and objects not defined in the
current translation. All such translator output is collected into a program image
which contains information needed for execution in its execution environment.

Forward references: universal character names (6.4.3), lexical elements (6.4),
preprocessing directives (6.10), trigraph sequences (5.2.1.1), external definitions (6.9).

5.1.1.3 Diagnostics

A conforming implementation shall produce at least one diagnostic message (identified in
an implementation-defined manner) if a preprocessing translation unit or translation unit
contains a violation of any syntax rule or constraint, even if the behavior is also explicitly
specified as undefined or implementation-defined. Diagnostic messages need not be
produced in other circumstances.

EXAMPLE Animplementation shall issue a diagnostic for the translation unit:

6) As described in 6.4, the process of dividing a source file's characters into preprocessing tokens is
context-dependent. For example, see the handlirgnathin a#include preprocessing directive.

7) The intent is that an implementation should identify the nature of, and where possible localize, each
violation. Of course, an implementation is free to produce any number of diagnostics as long as a
valid program is still correctly translated. It may also successfully translate an invalid program.

51.1.2 Environment 51.1.3

WG14/N843 Committee Draft — August 3, 1998 9

chari;

inti;
because in those cases where wording in this International Standard describes the behavior for a construct
as being both a constraint error and resulting in undefined behavior, the constraint error shall be diagnosed.

5.1.2 Execution environments

Two execution environments are defindtbestandingand hosted In both cases,
program startupoccurs when a designated C function is called by the execution
environment. All objects in static storage shallihigalized (set to their initial values)
before program startup. The manner and timing of such initialization are otherwise
unspecified.Program terminatiorreturns control to the execution environment.

Forward references: initialization (6.7.8).
5.1.2.1 Freestanding environment

In a freestanding environment (in which C program execution may take place without any
benefit of an operating system), the name and type of the function called at program
startup are implementation-defined. Any library facilities available to a freestanding
program, other than the minimal set required by clause 4, are implementation-defined.

The effect of program termination in a freestanding environment is implementation-
defined.

5.1.2.2 Hosted environment

A hosted environment need not be provided, but shall conform to the following
specifications if present.

5.1.2.2.1 Program startup

The function called at program startup is nammain . The implementation declares no
prototype for this function. It shall be defined with a return typenof and with no
parameters:

int main(void) { /* o X}

or with two parameters (referred to hereaagc andargv , though any names may be
used, as they are local to the function in which they are declared):

int main(int argc, char *argv[]) { /* o X}
or equivalen®) or in some other implementation-defined manner.

If they are declared, the parameters to iim@in function shall obey the following
constraints:

8) Thus,int can be replaced by a typedef name definddtas or the type ofargv can be written as
char ** argv , and so on.

51.1.3 Environment 51.22.1

10 Committee Draft — August 3, 1998 WG14/N843

— The value ofargc shall be nonnegative.
— argv|argc] shall be a null pointer.

— If the value ofargc is greater than zero, the array membargv[0] through
argv[argc-1] inclusive shall contain pointers to strings, which are given
implementation-defined values by the host environment prior to program startup. The
intent is to supply to the program information determined prior to program startup
from elsewhere in the hosted environment. If the host environment is not capable of
supplying strings with letters in both uppercase and lowercase, the implementation
shall ensure that the strings are received in lowercase.

— If the value ofargc is greater than zero, the string pointed to drgv|[0]
represents thgrogram name argv[0][0] shall be the null character if the
program name is not available from the host environment. If the valagyof is
greater than one, the strings pointed to dgv[l] through argv[argc-1]
represent therogram parameters

— The parameterargc andargv and the strings pointed to by thegv array shall
be modifiable by the program, and retain their last-stored values between program
startup and program termination.

5.1.2.2.2 Program execution

In a hosted environment, a program may use all the functions, macros, type definitions,
and objects described in the library clause (clause 7).

5.1.2.2.3 Program termination

If the return type of thenain function is a type compatible witht , a return from the
initial call to themain function is equivalent to calling trexit function with the value
returned by thenain function as its argumeftreaching thé that terminates thmain
function returns a value of 0. If the return type is not compatible with, the
termination status returned to the host environment is unspecified.

Forward references: definition of terms (7.1.1), thexit function (7.20.4.3).
5.1.2.3 Program execution

The semantic descriptions in this International Standard describe the behavior of an
abstract machine in which issues of optimization are irrelevant.

Accessing a volatile object, modifying an object, modifying a file, or calling a function
that does any of those operations aresie effects?) which are changes in the state of

the execution environment. Evaluation of an expression may produce side effects. At
certain specified points in the execution sequence cedl@dence pointgll side effects

of previous evaluations shall be complete and no side effects of subsequent evaluations
shall have taken place. (A summary of the sequence points is given in annex C.)

9) In accordance with 6.2.4, objects with automatic storage duration declamaninwill no longer
have storage guaranteed to be reserved in the former case even where they would in the latter.

51.2.2.1 Environment 51.2.3

10

WG14/N843 Committee Draft — August 3, 1998 11

In the abstract machine, all expressions are evaluated as specified by the semantics. An
actual implementation need not evaluate part of an expression if it can deduce that its
value is not used and that no needed side effects are produced (including any caused by
calling a function or accessing a volatile object).

When the processing of the abstract machine is interrupted by receipt of a signal, only the
values of objects as of the previous sequence point may be relied on. Objects that may be
modified between the previous sequence point and the next sequence point need not have
received their correct values yet.

An instance of each object with automatic storage duration is associated with each entry
into its block. Such an object exists and retains its last-stored value during the execution
of the block and while the block is suspended (by a call of a function or receipt of a
signal).

The least requirements on a conforming implementation are:

— At sequence points, volatile objects are stable in the sense that previous accesses are
complete and subsequent accesses have not yet occurred.

— At program termination, all data written into files shall be identical to the result that
execution of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place as specified in
7.19.3. The intent of these requirements is that unbuffered or line-buffered output
appear as soon as possible, to ensure that prompting messages actually appear prior to
a program waiting for input.

What constitutes an interactive device is implementation-defined.

More stringent correspondences between abstract and actual semantics may be defined by
each implementation.

EXAMPLE 1 An implementation might define a one-to-one correspondence between abstract and actual
semantics: at every sequence point, the values of the actual objects would agree with those specified by the
abstract semantics. The keywatalatile would then be redundant.

Alternatively, an implementation might perform various optimizations within each translation unit, such
that the actual semantics would agree with the abstract semantics only when making function calls across
translation unit boundaries. In such an implementation, at the time of each function entry and function
return where the calling function and the called function are in different translation units, the values of all
externally linked objects and of all objects accessible via pointers therein would agree with the abstract
semantics. Furthermore, at the time of each such function entry the values of the parameters of the called
function and of all objects accessible via pointers therein would agree with the abstract semantics. In this
type of implementation, objects referred to by interrupt service routines activateddigrthlie function

10) The IEC 60559 standard for binary floating-point arithmetic requires certain user-accessible status
flags and control modes. Floating-point operations implicitly set the status flags; modes affect result
values of floating-point operations. Implementations that support such floating-point state are
required to regard changes to it as side effects — see annex F for details. The floating-point
environment library<fenv.h> provides a programming facility for indicating when these side
effects matter, freeing the implementations in other cases.

51.2.3 Environment 51.2.3

11

12

13

14

12 Committee Draft — August 3, 1998 WG14/N843

would require explicit specification ofolatile storage, as well as other implementation-defined
restrictions.

EXAMPLE 2 In executing the fragment

char c1, c2;
|
cl=cl+c2

the “integer promotions” require that the abstract machine promote the value of each variablesiae

and then add the twiat s and truncate the sum. Provided the addition ofdar s can be done without
overflow, or with overflow wrapping silently to produce the correct result, the actual execution need only
produce the same result, possibly omitting the promotions.

EXAMPLE 3 Similarly, in the fragment

float f1, f2;

double d;

*

fl=1f2*d;
the multiplication may be executed using single-precision arithmetic if the implementation can ascertain
that the result would be the same as if it were executed using double-precision arithmetic (for exdmple, if
were replaced by the constan® , which has typeouble).

EXAMPLE 4 Implementations employing wide registers have to take care to honor appropriate
semantics. Values are independent of whether they are represented in a register or in memory. For
example, an implicispilling of a register is not permitted to alter the value. Also, an exptwie and load

is required to round to the precision of the storage type. In particular, casts and assignments are required to
perform their specified conversion. For the fragment

double d1, d2;

float f;

di=f= expression

d2 = (float) expressions

the values assigned dd andd2 are required to have been convertetidat

EXAMPLE 5 Rearrangement for floating-point expressions is often restricted because of limitations in
precision as well as range. The implementation cannot generally apply the mathematical associative rules
for addition or multiplication, nor the distributive rule, because of roundoff error, even in the absence of
overflow and underflow. Likewise, implementations cannot generally replace decimal constants in order to
rearrange expressions. In the following fragment, rearrangements suggested by mathematical rules for real
numbers are often not valid (see F.8).

double x, vy, z;

%

XxX=X*y *z not equivalenttx *= y * z;
z=X-y)+y ;I not equivalentta = x;

Z =X+ X*y; I not equivalentt@ = x (1.0 +);
y = x/ b5.0; 1 not equivalentty = x * 0.2;

5.1.2.3 Environment 5.1.2.3

15

16

WG14/N843 Committee Draft — August 3, 1998 13

EXAMPLE 6 To illustrate the grouping behavior of expressions, in the following fragment

int a, b;
|
a =a+ 32760+ b + 5;

the expression statement behaves exactly the same as
a = (((a+32760) + b) +5);

due to the associativity and precedence of these operators. Thus, the result of (he 82760) is
next added td, and that result is then addedstevhich results in the value assignedatdOn a machine in
which overflows produce an explicit trap and in which the range of values representablénby isn
[-32768, +32767], the implementation cannot rewrite this expression as

a = ((a+b)+32765);

since if the values foa andb were, respectively, —32754 and -15, the sum b would produce a trap
while the original expression would not; nor can the expression be rewritten either as

((a + 32765) + b);

a
or
a=(a+ (b + 32765));

since the values fa andb might have been, respectively, 4 and -8 or —17 and 12. However, on a machine
in which overflow silently generates some value and where positive and negative overflows cancel, the
above a&pression statement can be rewritten by the implementation in any ofdhe afys because the

same result will occur.

EXAMPLE 7 The grouping of an expression does not completely determine its evaluation. In the
following fragment

#include <stdio.h>

int sum;

char *p;

%

sum =sum * 10 - '0’ + (*p++ = getchar());

the expression statement is grouped as if it were written as
sum = (((sum * 10) - '0') + ((*(p++)) = (getchar())));

but the actual increment @f can occur at any time between the previous sequence point and the next
sequence point (thg), and the call t@etchar can occur at any point prior to the need of its returned
value.

Forward references: compound statement, or block (6.8.2), expressions (6.5), files
(7.19.3), sequence points (6.5, 6.8),dlgmal function (7.14), type qualifiers (6.7.3).

5.1.2.3 Environment 5.1.2.3

14 Committee Draft — August 3, 1998 WG14/N843

5.2 Environmental considerations

5.2.1 Character sets

Two sets of characters and their associated collating sequences shall be defined: the set in
which source files are written, and the set interpreted in the execution environment. The
values of the members of the execution character set are implementation-defined; any
additional members beyond those required by this subclause are locale-specific.

In a character constant or string literal, members of the execution character set shall be
represented by corresponding members of the source character set emcape
sequencesonsisting of the backslashfollowed by one or more characters. A byte with

all bits set to O, called thaull character, shall exist in the basic execution character set; it

is used to terminate a character string.

Both the basic source and basic execution character sets shall have at least the following
members: the 26 uppercase letters of the Latin alphabet

A B CDEF G H I J KL M
N O P Q R ST UV W X Y Z

the 26 lowercase letters of the Latin alphabet

a b c d e f g h i j k I m
n o p qr s t uv w x y z

the 10 decimal digits
0 1.2 3 45 6 7 8 9
the following 29 graphic characters

Lt % & () * o+, -]
, < = >2 [0 v -~ _ {1}~

the space character, and control characters representing horizontal tab, vertical tab, and
form feed. The representation of each member of the source and execution basic
character sets shall fit in a byte. In both the source and execution basic character sets, the
value of each character af@iin the alovelist of decimal digits shall be one greater than

the value of the previous. In source files, there shall be some way of indicating the end of
each line of text; this International Standard treats such an end-of-line indicator as if it
were a single new-line character. In the execution character set, there shall be control
characters representing alert, backspace, carriage return, and new line. If any other
characters are encountered in a source file (except in an identifier, a character constant, a
string literal, a header name, a comment, or a preprocessing token that is never converted
to a token), the behavior is undefined.

The universal character name construct provides a way to name other characters.

Forward references: universal character names (6.4.3), character constants (6.4.4.4),
preprocessing directives (6.10), string literals (6.4.5), comments (6.4.9), string (7.1.1).

5.2 Environment 521

WG14/N843 Committee Draft — August 3, 1998 15

5.2.1.1 Trigraph sequences

All occurrences in a source file of the following sequences of three characters (called
trigraph sequencéd)) are replaced with the corresponding single character.

27= # 2?)] 221 |
22([27?2 7 27>)
22/ \ 27< { 27- ~

No other trigraph sequences exist. E&dhat does not begin one of the trigraphs listed
above isnot changed.

EXAMPLE The following source line
printf("Eh???/n");

becomes (after replacement of the trigraph sequepicg
printf("Eh?\n");

5.2.1.2 Multibyte characters

The source character set may contain multibyte characters, used to represent members of
the extended character set. The execution character set may also contain multibyte
characters, which need not have the same encoding as for the source character set. For
both character sets, the following shall hold:

— The single-byte characters defined in 5.2.1 shall be present.

— The presence, meaning, and representation of any additional members is locale-
specific.

— A multibyte character set may have state-dependent encodingvherein each
sequence of multibyte characters begins iniramal shift state and enters other
locale-specificshift stateswhen specific multibyte characters are encountered in the
sequence. While in the initial shift state, all single-byte characters retain their usual
interpretation and do not alter the shift state. The interpretation for subsequent bytes
in the sequence is a function of the current shift state.

— A byte with all bits zero shall be interpreted as a null character independent of shift
state.

— A byte with all bits zero shall not occur in the second or subsequent bytes of a
multibyte character.

For source files, the following shall hold:

— An identifier, comment, string literal, character constant, or header name shall begin
and end in the initial shift state.

11) The trigraph sequences enable the input of characters that are not defined in the Invariant Code Set as
described in ISO/IEC 646, which is a subset of the seven-bit US ASCII code set.

5211 Environment 52.1.2

16 Committee Draft — August 3, 1998 WG14/N843

— An identifier, comment, string literal, character constant, or header name shall consist
of a sequence of valid multibyte characters.

5.2.2 Character display semantics

Theactive positioris that location on a display device where the next character output by
the fputc or fputwc function would appear. The intent of writing a printable
character (as defined by tleprint oriswprint ~ function) to a display device is to
display a graphic representation of that character at the active position and then advance
the active position to the next position on the current line. The direction of writing is
locale-specific. If the active position is at the final position of a line (if there is one), the
behavior is unspecified.

Alphabetic escape sequences representing nongraphic characters in the execution
character set are intended to produce actions on display devices as follows:

\a (alert) Produces an audible or visible alert. The active position shall not be changed.

\b (backspackMoves the active position to the previous position on the current line. If
the active position is at the initial position of a line, the behavior is unspecified.

\f (form feed Moves the active position to the initial position at the start of the next
logical page.

\n (new lin@ Moves the active position to the initial position of the next line.

\r (carriage returr) Moves the active position to the initial position of the current line.

\t (horizontal tal) Moves the active position to the next horizontal tabulation position
on the current line. If the active position is at or past the last defined horizontal
tabulation position, the behavior is unspecified.

\v (vertical tah Moves the active position to the initial position of the next vertical
tabulation position. If the active position is at or past the last defined vertical
tabulation position, the behavior is unspecified.

Each of these escape sequences shall produce a unique implementation-defined value
which can be stored in a singtear object. The external representations in a text file
need not be identical to the internal representations, and are outside the scope of this
International Standard.

Forward references: the isprint function (7.4.1.7), théputc function (7.19.7.3),
thefputwc functions (7.24.3.3), theswprint function (7.25.2.1.7).

521.2 Environment 5.2.2

WG14/N843 Committee Draft — August 3, 1998 17

5.2.3 Signals and interrupts

Functions shall be implemented such that they may be interrupted at any time by a signal,
or may be called by a signal handler, or both, with no alteration to earlier, but still active,
invocations’ control flow (after the interruption), function return values, or objects with
automatic storage duration. All such objects shall be maintained outsidanttten

image (the instructions that compose the executable representation of a function) on a
per-invocation basis.

5.2.4 Environmental limits

Both the translation and execution environments constrain the implementation of
language translators and libraries. The following summarizes the language-related
environmental limits on a conforming implementation; the library-related limits are
discussed in clause 7.

5.2.4.1 Translation limits

The implementation shall be able to translate and execute at least one program that
contains at least one instance of every one of the following lffits:

— 127 nesting levels of compound statements, iteration statements, and selection
statements

— 63 nesting levels of conditional inclusion

— 12 pointer, array, and function declarators (in any combinations) modifying an
arithmetic, structure, union, or incomplete type in a declaration

— 63 nesting levels of parenthesized declarators within a full declarator
— 63 nesting levels of parenthesized expressions within a full expression

— 63 significant initial characters in an internal identifier or a macro name (each
universal character name or extended source character is considered a single
character)

— 31 significant initial characters in an external identifier (each universal character name
specifying a character short identifier of OOOOFFFF or less is considered 6 characters,
each universal character name specifying a character short identifier of 00010000 or
more is considered 10 characters, and each extended source character is considered
the same number of characters as the corresponding universal character name, if any)

— 4095 external identifiers in one translation unit
— 511 identifiers with block scope declared in one block
— 4095 macro identifiers simultaneously defined in one preprocessing translation unit

— 127 parameters in one function definition

12) Implementations should avoid imposing fixed translation limits whenever possible.

5.2.3 Environment 524.1

18 Committee Draft — August 3, 1998 WG14/N843

— 127 arguments in one function call

— 127 parameters in one macro definition

— 127 arguments in one macro invocation

— 4095 characters in a logical source line

— 4095 characters in a character string literal or wide string literal (after concatenation)
— 65535 hytes in an object (in a hosted environment only)

— 15 nesting levels fottinclude d files

— 1023case labels for aswitch statement (excluding those for any nesteatch
statements)

— 1023 members in a single structure or union

— 1023 enumeration constants in a single enumeration

— 63 levels of nested structure or union definitions in a single struct-declaration-list
5.2.4.2 Numerical limits

A conforming implementation shall document all the limits specified in this subclause,
which are specified in the headetsnits.h> and<float.h> . Additional limits are
specified in<stdint.h>

5.2.4.2.1 Sizes of integer typedimits.h>

The values given below shall be replaced by constant expressions suitable fofifise in
preprocessing directives. Moreover, except @HAR_BIT and MB_LEN_MAXthe
following shall be replaced by expressions that have the same type as would an
expression that is an object of the corresponding type converted according to the integer
promotions. Their implementation-defined values shall be equal or greater in magnitude
(absolute value) to those shown, with the same sign.

— number of bits for smallest object that is not a bit-field (byte)
CHAR_BIT 8

— minimum value for an object of tyfségned char
SCHAR_MIN 127 11 -(2"-1)

— maximum value for an object of tygegned char
SCHAR_MAX +127 /| 2'-1

— maximum value for an object of typ@signed char
UCHAR_MAX 255 /| 22-1

— minimum value for an object of typdhar
CHAR_MIN see below

— maximum value for an object of typhar
CHAR_MAX see below

5.24.1 Environment 524.2.1

WG14/N843 Committee Draft — August 3, 1998 19

— maximum number of bytes in a multibyte character, for any supported locale

MB_LEN_MAX 1
— minimum value for an object of tyhort int

SHRT_MIN -32767 I/ -(2%-1)
— maximum value for an object of tygaort int

SHRT_MAX +32767 /| 2¥°-1
— maximum value for an object of typmsigned short int

USHRT_MAX 65535 // 2%-1
— minimum value for an object of typet

INT_MIN -32767 |/ —-(2¥*-1)
— maximum value for an object of tyj&

INT_MAX +32767 /I 2°-1
— maximum value for an object of typ@signed int

UINT_MAX 65535 // 2%-1
— minimum value for an object of typeng int

LONG_MIN -2147483647 /I —(2%'-1)
— maximum value for an object of typeng int

LONG_MAX +2147483647 /| 2%'1-1
— maximum value for an object of typasigned long int

ULONG_MAX 4294967295 /| 2¥-1
— minimum value for an object of typeng long int

LLONG_MIN -9223372036854775807 // -(2%2-1)

— maximum value for an object of tyjpeng long int
LLONG_MAX +9223372036854775807 /| 2%%-1

— maximum value for an object of typ@signed long long int
ULLONG_MAX 18446744073709551615 // 2°4-1

If the value of an object of typehar is treated as a signed integer when used in an
expression, the value &@HAR_MINshall be the same as that ®€HAR_MINand the
value of CHAR_MAXhall be the same as thatSCHAR_MAXOtherwise, the value of
CHAR_MINshall be 0 and the value &@HAR_MAXshall be the same as that of
UCHAR_MAY) The value UCHAR_MAX+1shall equal 2 raised to the power
CHAR_BIT.

5.2.4.2.2 Characteristics of floating typesfloat.h>

The characteristics of floating types are defined in terms of a model that describes a
representation of floating-point numbers and values that provide information about an
implementation’s floating-point arithmetl®) The following parameters are used to

13) See 6.2.5.

524.2.1 Environment 524.2.2

20 Committee Draft — August 3, 1998 WG14/N843

define the model for each floating-point type:

S sign 1)

b base or radix of exponent representation (an integer > 1)

e exponent (an integer between a minimeyp and a maximune,,,4,)
p precision (the number of babadigits in the significand)

fi nonnegative integers less tha(the significand digits)
A normalized floating-point number(f; > 0 if x # 0) is defined by the following model:

p
x=sxb®x > f,xb™®, e, <e<eny
k=1

Floating types may include values that are not normalized floating-point numbers, for
example subnormal floating-point numberg #0, e = e,,,, f; =0), Iinfinities, and
NaNs!® A NaN is an encoding signifying Not-a-Number. duiet NaN propagates
through almost every arithmetic operation without raising an exceptsignaling NaN
generally raises an exception when occurring as an arithmetic op&and.

The accuracy of the floating-point operatiofis <, *, /) and of the library functions in
<math.h> and <complex.h> that return floating-point results is implementation
defined. The implementation may state that the accuracy is unknown.

All integer values in thefloat.h> header, excepELT_ROUNDSshall be constant
expressions suitable for use#if preprocessing directives; all floating values shall be
constant expressions. All excdpECIMAL_DIG, FLT_EVAL_METHOPFLT_RADIX,
andFLT_ROUNDSave separate names for all three floating-point types. The floating-
point model representation is provided for all values exEépt EVAL_METHOLRnNd
FLT_ROUNDS

The rounding mode for floating-point addition is characterized by the value of
FLT_ROUNDS"

-1 indeterminable
0 toward zero
1 to nearest
2 toward positive infinity
3 toward negative infinity

All other values for FLT_ROUNDScharacterize implementation-defined rounding

14) The floating-point model is intended to clarify the description of each floating-point characteristic and
does not require the floating-point arithmetic of the implementation to be identical.

15) Although they are stored in floating types, infinities and NaNs are not floating-point numbers.

16) IEC 60559:1989 specifies quiet and signaling NaNs. For implementations that do not support IEC
60559:1989, the terms quiet NaN and signaling NaN are intended to apply to encodings with similar
behavior.

17) Evaluation ofFLT_ROUNDSo rrectly reflects any execution-time change of rounding mode through
the functionfesetround in <fenv.h>

524.2.2 Environment 524.2.2

WG14/N843 Committee Draft — August 3, 1998 21

behavior.

The values of operations with floating operands and values subject to the usual arithmetic
conversions and of floating constants are evaluated to a format whose range and precision
may be greater than required by the type. The use of evaluation formats is characterized
by the value ofLT_EVAL_METHOB®

-1 indeterminable;
0 evaluate all operations and constants just to the range and precision of the
type;
1 evaluate operations and constants of tfjpat and double to the

range and precision of thdouble type, evaluatelong double
operations and constants to the range and precision lainpelouble
type;

2 evaluate all operations and constants to the range and precision of the
long double type.

All other negative values fdfLT_EVAL_METHOI2haracterize implementation-defined
behavior.

The values given in the following list shall be replaced by implementation-defined
constant expressions with values that are greater or equal in magnitude (absolute value) to
those shown, with the same sign:

— radix of exponent representatidn,
FLT_RADIX 2

— number of bas<_RADIX digits in the floating-point significang,

FLT_MANT _DIG
DBL_MANT_DIG
LDBL_MANT DIG

— number of decimal digitsp, such that any floating-point number in the widest
supported floating type witlp,,., radix b digits can be rounded to a floating-point
number withn decimal digits and back again without change to the value,

Pmax X loglo b if bisa power of 10
[1 + Pmax X 109, b7 otherwise
DECIMAL_DIG 10

— number of decimal digitg], such that any floating-point number wgldecimal digits
can be rounded into a floating-point number wotihadix b digits and back again
without change to thg decimal digits,

18) The evaluation method determines evaluation formats of expressions involving all floating types, not
just real types. For example, FLT _EVAL METHODs 1, then the product of twdloat
_Complex operands is represented in ttmuble _Complex format, and its parts are evaluated to
double .

524.2.2 Environment 524.2.2

10

22 Committee Draft — August 3, 1998 WG14/N843

p xlog,,b if bis a power of 10
i{p - 1) x log,, bJ otherwise
FLT DIG 6
DBL_DIG 10
LDBL_DIG 10

— minimum negative integer such tHdtT_RADIX raised to one less than that power is
a normalized floating-point numbex;,

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

— minimum negative integer such that 10 raised to that power is in the range of
normalized floating-point number%log10 pemin—1 LI

O
FLT_MIN_10_EXP -37
DBL_MIN_10_EXP -37
LDBL_MIN_10_EXP -37

— maximum integer such th<_RADIX raised to one less than that power is a
representable finite floating-point numbey,,

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

— maximum integer such that 10 raised to that power is in the range of representable
finite floating-point numbersjlog,o((1 — b™P) x b®=)

FLT_MAX_10_EXP +37
DBL_MAX_10_EXP +37
LDBL_MAX_10_EXP +37

The values given in the following list shall be replaced by implementation-defined
constant expressions with values that are greater than or equal to those shown:

— maximum representable finite floating-point number; (L P) x b

FLT_MAX 1E+37
DBL_MAX 1E+37
LDBL_MAX 1E+37

The values given in the following list shall be replaced by implementation-defined
constant expressions with (positive) values that are less than or equal to those shown:

— the difference between 1 and the least value greater than 1 that is representable in the
given floating point typeh' P

524.2.2 Environment 524.2.2

11

WG14/N843 Committee Draft — August 3, 1998

FLT_EPSILON 1E-5
DBL_EPSILON 1E-9
LDBL_EPSILON 1E-9

— minimum normalized positive floating-point numbgfirn—*
FLT_MIN 1E-37
DBL_MIN 1E-37
LDBL_MIN 1E-37

23

EXAMPLE 1 The following describes an artificial floating-point representation that meets the minimum

requirements of this International Standard, and the appropriate valuedlaatzh>

float

6
X=sx16°x 5 f, x16%, -31<e<+32
k=1

FLT_RADIX 16
FLT_MANT_DIG 6
FLT_EPSILON 9.53674316E-07F
FLT DIG 6
FLT_MIN_EXP -31
FLT_MIN 2.93873588E-39F
FLT_MIN_10_EXP -38
FLT_MAX_EXP +32
FLT_MAX 3.40282347E+38F
FLT_MAX_10_EXP +38

header for type

12 EXAMPLE 2 The following describes floating-point representations that also meet the requirements for
single-precision and double-precision normalized numbers in IEC 685&9] the appropriate values in a

<float.h> header for typeBioat anddouble :

24
Xg=sx22x 5 f,x2% -125<e<+128
k=1

53
Xg=sx28x 3 f,x2¥% -1021<e<+1024
k=1

19) The floating-point model in that standard sums powebsfi@im zero, so the values of the exponent

limits are one less than shown here.

524.2.2 Environment

5.24.2.2

24 Committee Draft — August 3, 1998 WG14/N843

FLT_RADIX 2

DECIMAL_DIG 17

FLT_MANT_DIG 24

FLT_EPSILON 1.19209290E-07F // decimal constant
FLT_EPSILON 0X1P-23F // hex constant
FLT DIG 6

FLT_MIN_EXP -125

FLT_MIN 1.17549435E-38F // decimal constant
FLT_MIN 0X1P-126F // hex constant
FLT_MIN_10_EXP -37

FLT_MAX_EXP +128

FLT_MAX 3.40282347E+38F // decimal constant
FLT_MAX OX1.fffffeP127F // hex constant
FLT_MAX_10_EXP +38

DBL_MANT_DIG 53

DBL_EPSILON 2.2204460492503131E-16 // decimal constant
DBL_EPSILON 0X1P-52 /I hex constant
DBL_DIG 15

DBL_MIN_EXP -1021

DBL_MIN 2.2250738585072014E-308 // decimal constant
DBL_MIN 0X1P-1022 /I hex constant
DBL_MIN_10_EXP -307

DBL_MAX_EXP +1024

DBL_MAX 1.7976931348623157E+308 // decimal constant
DBL_MAX OX1.ffffffffffffeP1023 // hex constant
DBL_MAX_10_EXP +308

If a type wider thandouble were supported, theDECIMAL DIG would be greater than 17. For
example, if the widest type were to use the minimal-width IEC 60559 double-extended format (64 bits of
precision), theECIMAL_DIGwould be 21.

Forward references: conditional inclusion (6.10.1), complex arithmetic
<complex.h> (7.3), mathematicsxmath.h> (7.12), integer types<stdint.h>
(7.18).

524.2.2 Environment 524.2.2

WG14/N843 Committee Draft — August 3, 1998 25

6. Language

6.1 Notation

In the syntax notation used in this clause, syntactic categories (nonterminals) are
indicated byitalic type and literal words and character set members (terminalsdloy

type . A colon () following a nonterminal introduces its definition. Alternative
definitions are listed on separate lines, except when prefaced by the words “one of”. An
optional symbol is indicated by the subscript “opt”, so that

{ expressiog, }
indicates an optional expression enclosed in braces.

A summary of the language syntax is given in annex A.
6.2 Concepts

6.2.1 Scopes of identifiers

An identifier can denote an object; a function; a tag or a member of a structure, union, or
enumeration; a typedef name; a label name; a macro name; or a macro parameter. The
same identifier can denote different entities at different points in the program. A member
of an enumeration is called aenumeration constantMacro names and macro
parameters are not considered further here, because prior to the semantic phase of
program translation any occurrences of macro names in the source file are replaced by the
preprocessing token sequences that constitute their macro definitions.

For each different entity that an identifier designates, the identifigilide (i.e., can be

used) only within a region of program text calledsit®pe Different entities designated

by the same identifier either have different scopes, or are in different name spaces. There
are four kinds of scopes: function, file, block, and function prototype.fu@tion
prototypeis a declaration of a function that declares the types of its parameters.)

A label name is the only kind of identifier that Hasction scope It can be used (in a
goto statement) anywhere in the function in which it appears, and is declared implicitly
by its syntactic appearance (followed by and a statement). Label names shall be
unique within a function.

Every other identifier has scope determined by the placement of its declaration (in a
declarator or type specifier). If the declarator or type specifier that declares the identifier
appears outside of any block or list of parameters, the identifiefilbascope which
terminates at the end of the translation unit. If the declarator or type specifier that
declares the identifier appears inside a block or within the list of parameter declarations in
a function definition, the identifier hadock scopewhich terminates at thie that closes

the associated block. If the declarator or type specifier that declares the identifier appears
within the list of parameter declarations in a function prototype (not part of a function
definition), the identifier hainction prototype scop&vhich terminates at the end of the
function declarator. If an identifier designates two different entities in the same name
space, the scopes might overlap. If so, the scope of one entitpr{thhescopg will be a

strict subset of the scope of the other entity ¢hieer scopg Within the inner scope, the

6 Language 6.2.1

26 Committee Draft — August 3, 1998 WG14/N843

identifier designates the entity declared in the inner scope; the entity declared in the outer
scope ihidden(and not visible) within the inner scope.

Unless explicitly stated otherwise, where this International Standard uses the term
identifier to refer to some entity (as opposed to the syntactic construct), it refers to the
entity in the relevant name space whose declaration is visible at the point the identifier
occurs.

Two identifiers have the same scope if and only if their scopes terminate at the same
point.

Structure, union, and enumeration tags have scope that begins just after the appearance of
the tag in a type specifier that declares the tag. Each enumeration constant has scope that
begins just after the appearance of its defining enumerator in an enumerator list. Any
other identifier has scope that begins just after the completion of its declarator.

Forward references: compound statement, or block (6.8.2), declarations (6.7),
enumeration specifiers (6.7.2.2), function calls (6.5.2.2), function declarators (including
prototypes) (6.7.5.3), function definitions (6.9.1), gwto statement (6.8.6.1), labeled
statements (6.8.1), name spaces of identifiers (6.2.3), scope of macro definitions
(6.10.3.5), source file inclusion (6.10.2), tags (6.7.2.3), type specifiers (6.7.2).

6.2.2 Linkages of identifiers

An identifier declared in different scopes or in the same scope more than once can be
made to refer to the same object or function by a process tiakade There are three
kinds of linkage: external, internal, and none.

In the set of translation units and libraries that constitutes an entire program, each
declaration of a particular identifier wigxternal linkagedenotes the same object or
function. Within one translation unit, each declaration of an identifier inigrnal
linkage denotes the same object or function. Each declaration of an identifienavith
linkagedenotes a unigue entity.

If the declaration of a file scope identifier for an object or a function contains the storage-
class specifiestatic , the identifier has internal linkag®.

For an identifier declared with the storage-class speeifigrn in a scope in which a

prior declaration of that identifier is visibf®,if the prior declaration specifies internal or
external linkage, the linkage of the identifier at the later declaration is the same as the
linkage specified at the prior declaration. If no prior declaration is visible, or if the prior
declaration specifies no linkage, then the identifier has external linkage.

If the declaration of an identifier for a function has no storage-class specifier, its linkage
is determined exactly as if it were declared with the storage-class spexiéen . If
the declaration of an identifier for an object has file scope and no storage-class specifier,

20) A function declaration can contain the storage-class spestifiic only if it is at file scope; see
6.7.1.

21) As specified in 6.2.1, the later declaration might hide the prior declaration.

6.2.1 Language 6.2.2

WG14/N843 Committee Draft — August 3, 1998 27

its linkage is external.

The following identifiers have no linkage: an identifier declared to be anything other than
an object or a function; an identifier declared to be a function parameter; a block scope
identifier for an object declared without the storage-class speoitiem

If, within a translation unit, the same identifier appears with both internal and external
linkage, the behavior is undefined.

Forward references: compound statement, or block (6.8.2), declarations (6.7),
expressions (6.5), external definitions (6.9).

6.2.3 Name spaces of identifiers

If more than one declaration of a particular identifier is visible at any point in a
translation unit, the syntactic context disambiguates uses that refer to different entities.
Thus, there are separatame spacefor various categories of identifiers, as follows:

— label namegdisambiguated by the syntax of the label declaration and use);

— thetagsof structures, unions, and enumerations (disambiguated by followirfg any
of the keywordstruct , union , or enum);

— the membersof structures or unions; each structure or union has a separate name
space for its members (disambiguated by the type of the expression used to access the
member via the or-> operator);

— all other identifiers, calledrdinary identifiers(declared in ordinary declarators or as
enumeration constants).

Forward references: enumeration specifiers (6.7.2.2), labeled statements (6.8.1),
structure and union specifiers (6.7.2.1), structure and union members (6.5.2.3), tags
(6.7.2.3).

6.2.4 Storage durations of objects

An object has atorage durationthat determines its lifetime. There are three storage
durations: static, automatic, and allocated. Allocated storage is described in 7.20.3.

An object whose identifier is declared with external or internal linkage, or with the
storage-class specifistatic ~ hasstatic storage durationFor such an object, storage is
reserved and its stored value is initialized only once, prior to program startup. The object
exists, has a constant address, and retains its last-stored value throughout the execution of
the entire prograr’)

22) There is only one name space for tags even though three are possible.

23) The terntonstant addressieans that two pointers to the object constructed at possibly different times
will compare equal. The address may be different during two different executions of the same
program.

In the case of a volatile object, the last store need not be explicit in the program.

6.2.2 Language 6.2.4

28 Committee Draft — August 3, 1998 WG14/N843

An object whose identifier is declared with no linkage and without the storage-class
specifierstatic hasautomatic storage duratiori-or objects that do not have a variable
length array type, storage is guaranteed to be reserved for a new instance of the object on
each entry into the block with which it is associated; the initial value of the object is
indeterminate. If an initialization is specified for the object, it is performed each time the
declaration is reached in the execution of the block; otherwise, the value becomes
indeterminate each time the declaration is reached. Storage for the object is no longer
guaranteed to be reserved when execution of the block ends in any way. (Entering an
enclosed block or calling a function suspends, but does not end, execution of the current
block.)

For objects that do have a variable length array type, storage is guaranteed to be reserved
for a new instance of the object each time the declaration is reached in the execution of
the program. The initial value of the object is indeterminate. Storage for the object is no
longer guaranteed to be reserved when the execution of the program leaves the scope of
the declaratiod®

If an object is referred to when storage is not reserved for it, the behavior is undefined.
The value of a pointer that referred to an object whose storage is no longer reserved is
indeterminate. During the time that its storage is reserved, an object has a constant
address.

Forward references: compound statement, or block (6.8.2), function calls (6.5.2.2),
declarators (6.7.5), array declarators (6.7.5.2), initialization (6.7.8).

6.2.5 Types

The meaning of a value stored in an object or returned by a function is determined by the
type of the expression used to access it. (An identifier declared to be an object is the
simplest such expression; the type is specified in the declaration of the identifier.) Types
are partitioned intambject typeqtypes that describe object$linction typegtypes that
describe functions), andncomplete types(types that describe objects but lack
information needed to determine their sizes).

An object declared as typ®ool is large enough to store the values 0 and 1.

An object declared as typshar is large enough to store any member of the basic
execution character set. If a member of the required source character set enumerated in
5.2.1 is stored in &har object, its value is guaranteed to be positive. If any other
character is stored in @ar object, the resulting value is implementation-defined but
shall be within the range of values that can be represented in that type.

There are fivestandard signed integer typedesignated asigned char , short

int , int , long int , andlong long int . (These and other types may be
designated in several additional ways, as described in 6.7.2.)) There may also be
implementation-define@xtended signed integer typ@® The standard and extended

24) Leaving the innermost block containing the declaration, or jumping to a point in that block or an
embedded block prior to the declaration, leaves the scope of the declaration.

6.2.4 Language 6.2.5

10

11

12

WG14/N843 Committee Draft — August 3, 1998 29

signed integer types are collectively caltéghed integer type®)

An object declared as tyggned char occupies the same amount of storage as a
“plain” char object. A “plain” int object has the natural size suggested by the
architecture of the execution environment (large enough to contain any value in the range
INT_MIN to INT_MAXas defined in the headelimits.h>).

For each of the signed integer types, there is a corresponding (but diftereigmhed
integer type(designated with the keywondnsigned) that uses the same amount of
storage (including sign information) and has the same alignment requirements. The type
_Bool and the unsigned integer types that correspond to the standard signed integer
types are thestandard unsigned integer typesThe unsigned integer types that
correspond to the extended signed integer types aextiieded unsigned integer types

The standard signed integer types and standard unsigned integer types are collectively
called thestandard integer typesthe extended signed integer types and extended
unsigned integer types are collectively calledakiended integer types

For any two types with the same signedness and different integer conversion rank (see
6.3.1.1), the range of values of the type with smaller integer conversion rank is a subrange
of the values of the other type.

The range of nonnegative values of a signed integer type is a subrange of the
corresponding unsigned integer type, and the representation of the same value in each
type is the sam®) A computation involving unsigned operands can never overflow,
because a result that cannot be represented by the resulting unsigned integer type is
reduced modulo the number that is one greater than the largest value that can be
represented by the resulting unsigned integer type.

There are threeal floating typesdesignated afoat , double , andlong double
The set of values of the tyfleat is a subset of the set of values of the tgpable ;
the set of values of the tymmuble is a subset of the set of values of the tige
double .

There are threecomplex types designated asfloat _Complex , double
_Complex , andlong double _Complex .28 The real floating and complex types
are collectively called th#oating types

For each floating type there icarresponding real typewhich is always a real floating
type. For real floating types, it is the same type. For complex types, it is the type given

25) Implementation-defined keywords shall have the form of an identifier reserved for any use as
described in 7.1.3.

26) Therefore, any statement in this Standard about signed integer types also applies to the extended
signed integer types.

27) The same representation and alignment requirements are meant to imply interchangeability as
arguments to functions, return values from functions, and members of unions.

28) A specification for imaginary types is in informative annex G.

6.2.5 Language 6.2.5

13

14

15

16

17

18

19

30 Committee Draft — August 3, 1998 WG14/N843

by deleting the keywordComplex from the type name.

Each complex type has the same representation and alignment requirements as an array
type containing exactly two elements of the corresponding real type; the first element is
equal to the real part, and the second element to the imaginary part, of the complex
number.

The typechar , the signed and unsigned integer types, and the floating types are
collectively called thébasic typesEven if the implementation defines two or more basic
types to have the same representation, they are nevertheless differeftypes.

The three typeshar , signed char , andunsigned char are collectively called
the character types The implementation shall defirehar to have the same range,
representation, and behavior as eiigned char orunsigned char .39

An enumerationcomprises a set of named integer constant values. Each distinct
enumeration constitutes a differamumerated type

The typechar , the signed and unsigned integer types, and the enumerated types are
collectively callednteger typesThe integer and real floating types are collectively called
real types

Thevoid type comprises an empty set of values; it is an incomplete type that cannot be
completed.

Any number ofderived typescan be constructed from the object, function, and
incomplete types, as follows:

— An array typedescribes a contiguously allocated nonempty set of objects with a
particular member object type, called tleement typél) Array types are
characterized by their element type and by the number of elements in the array. An
array type is said to be derived from its element type, and if its element Jpehis
array type is sometimes called “array©f. The construction of an array type from
an element type is called “array type derivation”.

— A structure typedescribes a sequentially allocated nonempty set of member objects
(and, in certain circumstances, an incomplete array), each of which has an optionally
specified name and possibly distinct type.

29) An implementation may define new keywords that provide alternative ways to designate a basic (or
any other) type; this does not violate the requirement that all basic types be different.
Implementation-defined keywords shall have the form of an identifier reserved for any use as
described in 7.1.3.

30) CHAR_MINdefined in<limits.h> | will have one of the values 0 8CHAR_MINand this can be
used to distinguish the two options. Irrespective of the choice rohde, is a separate type from the
other two and is not compatible with either.

31) Since object types do not include incomplete types, an array of incomplete type cannot be constructed.

6.2.5 Language 6.2.5

20
21

22

23

24

25

26

WG14/N843 Committee Draft — August 3, 1998 31

— A union typedescribes an overlapping nonempty set of member objects, each of
which has an optionally specified name and possibly distinct type.

— A function typedescribes a function with specified return type. A function type is
characterized by its return type and the number and types of its parameters. A
function type is said to be derived from its return type, and if its return typetie
function type is sometimes called “function returnimd. The construction of a
function type from a return type is called “function type derivation”.

— A pointer typemay be derived from a function type, an object type, or an incomplete
type, called thereferenced typeA pointer type describes an object whose value
provides a reference to an entity of the referenced type. A pointer type derived from
the referenced typ& is sometimes called “pointer td”. The construction of a
pointer type from a referenced type is called “pointer type derivation”.

These methods of constructing derived types can be applied recursively.

Integer and floating types are collectively cakehmetic typesArithmetic types and
pointer types are collectively calledcalar types Array and structure types are
collectively calledaggregate type%z)

Each arithmetic type belongs to dgpedomain Thereal type domaircomprises the real
types. Thecomplex type domaicomprises the complex types.

An array type of unknown size is an incomplete type. It is completed, for an identifier of

that type, by specifying the size in a later declaration (with internal or external linkage).

A structure or union type of unknown content (as described in 6.7.2.3) is an incomplete
type. Itis completed, for all declarations of that type, by declaring the same structure or
union tag with its defining content later in the same scope. A structure type containing a
flexible array member is an incomplete type that cannot be completed.

Array, function, and pointer types are collectively calietived declarator typesA
declarator type derivatiorirom a typeT is the construction of a derived declarator type
from T by the application of an array-type, a function-type, or a pointer-type derivation to
T.

A type is characterized by itgpe categorywhich is either the outermost derivation of a
derived type (as noted ale inthe construction of derived types), or the type itself if the
type consists of no derived types.

Any type so far mentioned is amqualified type Each unqualified type has several
qualified versionf its type3® corresponding to the combinations of one, two, or all
three of theconst , volatile , andrestrict qualifiers. The qualified or unqualified
versions of a type are distinct types that belong to the same type category and have the
same representation and alignment requirenféhta.derived type is not qualified by the
qualifiers (if any) of the type from which it is derived.

32) Note that aggregate type does not include union type because an object with union type can only
contain one member at a time.

33) See 6.7.3 regarding qualified array and function types.

6.2.5 Language 6.2.5

27

28

29

32 Committee Draft — August 3, 1998 WG14/N843

A pointer tovoid shall have the same representation and alignment requirements as a
pointer to a character type. Similarly, pointers to qualified or unqualified versions of
compatible types shall have the same representation and alignment requifématits.
pointers to structure types shall have the same representation and alignment requirements
as each other. All pointers to union types shall have the same representation and
alignment requirements as each other. Pointers to other types need not have the same
representation or alignment requirements.

EXAMPLE 1 The type designated adldat* " has type “pointer tofloat ”. Its type category is

pointer, not a floating type. The const-qualified version of this type is designatéidats “ * const ”

whereas the type designated asrist float *” is not a qualified type — its type is “pointer to const-
gualifiedfloat " and is a pointer to a qualified type.

EXAMPLE 2 The type designated astfuct tag (*[5])(float) " has type “array of pointer to
function returningstruct tag ”. The array has length five and the function has a single parameter of type
float . Its type category is array.

Forward references: character constants (6.4.4.4), compatible type and composite type
(6.2.7), declarations (6.7), tags (6.7.2.3), type qualifiers (6.7.3).

6.2.6 Representations of types
The representations of all types are unspecified except as stated in this subclause.

6.2.6.1 General

Except for bit-fields, objects are composed of contiguous sequences of one or more bytes,
the number, order, and encoding of which are either explicitly specified or
implementation-defined.

Values stored in objects of typmsigned char shall be represented using a pure
binary notatior’®)

Values stored in objects of any other object type consistxd@HAR_BIT bits, wheren

is the size of an object of that type, in bytes. The value may be copied into an object of
type unsigned char [n] (e.g., bymemcpy); the resulting set of bytes is called the
object representationf the value. Two values (other than NaNs) with the same object
representation compare equal, but values that compare equal may have different object
representations.

Certain object representations need not represent a value of the object type. If the stored
value of an object has such a representation and is accessed by an Ivalue expression that
does not have character type, the behavior is undefined. If such a representation is

34) A positional representation for integers that uses the binary digits O and 1, in which the values
represented by successive bits are additive, begin with 1, and are multiplied by successive integral
powers of 2, except perhaps the bit with the highest position. (Adapted frofmgtiécan National
Dictionary for Information Processing Systen#\ byte containlCHAR_BIT bits, and the values of
typeunsigned char range from 0 t@“HARBIT — 1.

6.2.5 Language 6.2.6.1

WG14/N843 Committee Draft — August 3, 1998 33

produced by a side effect that modifies all or any part of the object by an Ivalue
expression that does not have character type, the behavior is undefirsuth a
representation is calledti@p representation

When a value is stored in an object of structure or union type, including in a member
object, the bytes of the object representation that correspond to any padding bytes take
unspecified value¥) The values of padding bytes shall not affect whether the value of
such an object is a trap representation. Those bits of a structure or union object that are
in the same byte as a bit-field member, but are not part of that member, shall similarly not
affect whether the value of such an object is a trap representation.

When a value is stored in a member of an object of union type, the bytes of the object
representation that do not correspond to that member but do correspond to other members
take unspecified values, but the value of the union object shall not thereby become a trap
representation.

Where an operator is applied to a value which has more than one object representation,
which object representation is used shall not affect the value of the result. Where a value
is stored in an object using a type that has more than one object representation for that
value, it is unspecified which representation is used, but a trap representation shall not be
generated.

6.2.6.2 Integer types

For unsigned integer types other thansigned char , the bits of the object
representation shall be divided into two groups: value bits and padding bits (there need
not be any of the latter). If there aM value bits, each bit shall represent a different
power of 2 between 1 and“?Z, so that objects of that type shall be capable of
representing values from 0 td'2 1 using a pure binary representation; this shall be
known as the value representation. The values of any padding bits are unsp@cified.

For signed integer types, the bits of the object representation shall be divided into three
groups: value bits, padding bits, and the sign bit. There need not be any padding bits;
there shall be exactly one sign bit. Each bit that is a value bit shall have the same value as
the same bit in the object representation of the corresponding unsigned type (if there are
M value bits in the signed type ahdin the unsigned type, thél < N). If the sign bit

is zero, it shall not affect the resulting value. If the sign bit is one, then the value shall be
modified in one of the following ways:

35) Thus an automatic variable can be initialized to a trap representation without causing undefined
behavior, but the value of the variable cannot be used until a proper value is stored in it.

36) Thus, for example, structure assignment may be implemented element-at-a-tintaemejay.

37) Some combinations of padding bits might generate trap representations, for example, if one padding
bit is a parity bit. Regardless, no arithmetic operation on valid values can generate a trap
representation other than as part of an exception such as an overflow, and this cannot occur with
unsigned types. All other combinations of padding bits are alternative object representations of the
value specified by the value bits.

6.2.6.1 Language 6.2.6.2

34 Committee Draft — August 3, 1998 WG14/N843

— the corresponding value with sign bit O is negated,;
— the sign bit has the valu@":
— the sign bit has the value-12".

The values of any padding bits are unspecitidd A valid (non-trap) object
representation of a signed integer type where the sign bit is zero is a valid object
representation of the corresponding unsigned type, and shall represent the same value.

The precision of an integer type is the number of bits it uses to represent values,
excluding any sign and padding bits. Thedth of an integer type is the same but
including any sign bit; thus for unsigned integer types the two values are the same, while
for signed integer types the width is one greater than the precision.

6.2.7 Compatible type and composite type

Two types havecompatible typeif their types are the same. Additional rules for
determining whether two types are compatible are described in 6.7.2 for type specifiers,
in 6.7.3 for type qualifiers, and in 6.7.5 for declarat8tsMoreover, two structure,

union, or enumerated types declared in separate translation units are compatible if their
tags and members satisfy the following requirements: If one is declared with a tag, the
other shall be declared with the same tag. If both are completed types, then the following
additional requirements apply: there shall be a one-to-one correspondence between their
members such that each pair of corresponding members are declared with compatible
types, and such that if one member of a corresponding pair is declared with a name, the
other member is declared with the same name. For two structures, corresponding
members shall be declared in the same order. For two structures or unions, corresponding
bit-fields shall have the same widths. For two enumerations, corresponding members
shall have the same values.

All declarations that refer to the same object or function shall have compatible type;
otherwise, the behavior is undefined.

A composite typean be constructed from two types that are compatible; it is a type that
is compatible with both of the two types and satisfies the following conditions:

— If one type is an array of known constant size, the composite type is an array of that
size; otherwise, if one type is a variable length array, the composite type is that type.

— If only one type is a function type with a parameter type list (a function prototype),
the composite type is a function prototype with the parameter type list.

— If both types are function types with parameter type lists, the type of each parameter
in the composite parameter type list is the composite type of the corresponding
parameters.

These rules apply recursively to the types from which the two types are derived.

38) Two types need not be identical to be compatible.

6.2.6.2 Language 6.2.7

WG14/N843 Committee Draft — August 3, 1998 35

For an identifier with internal or external linkage declared in a scope in which a prior
declaration of that identifier is visibf&) if the prior declaration specifies internal or
external linkage, the type of the identifier at the later declaration becomes the composite

type.
EXAMPLE Given the following two file scope declarations:

int f(int (*)(), double (*)[3]);
int f(int (*)(char *), double (*)[]);

The resulting composite type for the function is:
int f(int (*)(char *), double (*)[3]);

Forward references: declarators (6.7.5), enumeration specifiers (6.7.2.2), structure and
union specifiers (6.7.2.1), type definitions (6.7.7), type qualifiers (6.7.3), type specifiers
(6.7.2).

39) As specified in 6.2.1, the later declaration might hide the prior declaration.

6.2.7 Language 6.2.7

36 Committee Draft — August 3, 1998 WG14/N843

6.3 Conversions

Several operators convert operand values from one type to another automatically. This
subclause specifies the result required from sudmgplicit conversionas well as those

that result from a cast operation (@xplicit conversioh The list in 6.3.1.8 summarizes

the conversions performed by most ordinary operators; it is supplemented as required by
the discussion of each operator in 6.5.

Conversion of an operand value to a compatible type causes no change to the value or the
representation.

Forward references: cast operators (6.5.4).

6.3.1 Arithmetic operands

6.3.1.1 Boolean, characters, and integers

Every integer type has ameger conversion ranklefined as follows:

— No two signed integer types shall have the same rank, even if they have the same
representation.

— The rank of a signed integer type shall be greater than the rank of any signed integer
type with less precision.

— The rank oflong long int shall be greater than the ranklofg int , which
shall be greater than the rankinf , which shall be greater than the rankshbrt
int , which shall be greater than the ranlsigined char

— The rank of any unsigned integer type shall equal the rank of the corresponding
signed integer type, if any.

— The rank of any standard integer type shall be greater than the rank of any extended
integer type with the same width.

— The rank ofthar shall equal the rank gigned char andunsigned char
— The rank of Bool shall be less than the rank of all other standard integer types.
— The rank of any enumerated type shall equal the rank of the compatible integer type.

— The rank of any extended signed integer type relative to another extended signed
integer type with the same precision is implementation-defined, but still subject to the
other rules for determining the integer conversion rank.

— For all integer typed1, T2, and T3, if T1 has greater rank thai2 and T2 has
greater rank tham3, thenT1 has greater rank thar8.

The following may be used in an expression whereventanor unsigned int may
be used:

— An object or expression with an integer type whose integer conversion rank is less
than the rank aoiht andunsigned int

6.3 Language 6.3.1.1

WG14/N843 Committee Draft — August 3, 1998 37

— A bit-field of type_Bool , int ,signed int , orunsigned int

If anint can represent all values of the original type, the value is convertedrib an
otherwise, it is converted to aansigned int . These are called thanteger
promotions®® All other types are unchanged by the integer promotions.

The integer promotions preserve value including sign. As discussed earlier, whether a
“plain” char is treated as signed is implementation-defined.

Forward references: enumeration specifiers (6.7.2.2), structure and union specifiers
(6.7.2.1).

6.3.1.2 Boolean type

When any scalar value is converted Bool , the result is O if the value compares equal
to O; otherwise, the result is 1.

6.3.1.3 Signed and unsigned integers

When a value with integer type is converted to another integer type otheiBbal, if
the value can be represented by the new type, it is unchanged.

Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or
subtracting one more than the maximum value that can be represented in the new type
until the value is in the range of the new type.

Otherwise, the new type is signed and the value cannot be represented in it; the result is
implementation-defined.

6.3.1.4 Real floating and integer

When a finite value of real floating type is converted to integer type other Boah ,
the fractional part is discarded (i.e., the value is truncated toward zero). If the value of
the integral part cannot be represented by the integer type, the behavior is uddefined.

When a value of integer type is converted to real floating type, if the value being
converted is in the range of values that can be represented but cannot be represented
exactly, the result is either the nearest higher or nearest lower value, chosen in an
implementation-defined manner. If the value being converted is outside the range of
values that can be represented, the behavior is undefined.

40) The integer promotions are applied only: as part of the usual arithmetic conversions, to certain
argument expressions, to the operands of the unaryand™ operators, and to both operands of the
shift operators, as specified by their respective subclauses.

41) The remaindering operation performed when a value of integer type is converted to unsigned type
need not be performed when a value of real floating type is converted to unsigned type. Thus, the
range of portable real floating values is (Wiype MAX-1).

6.3.1.1 Language 6.3.1.4

38 Committee Draft — August 3, 1998 WG14/N843

6.3.1.5 Real floating types

When afloat is promoted talouble orlong double , or adouble is promoted
tolong double , its value is unchanged.

When adouble is demoted tdloat or along double to double orfloat , if

the value being converted is outside the range of values that can be represented, the
behavior is undefined. If the value being converted is in the range of values that can be
represented but cannot be represented exactly, the result is either the nearest higher or
nearest lower value, chosen in an implementation-defined manner.

6.3.1.6 Complex types

When a value of complex type is converted to another complex type, both the real and
imaginary parts follow the conversion rules for the corresponding real types.

6.3.1.7 Real and complex

When a value of real type is converted to a complex type, the real part of the complex
result value is determined by the rules of conversion to the corresponding real type and
the imaginary part of the complex result value is a positive zero or an unsigned zero.

When a value of complex type is converted to a real type, the imaginary part of the
complex value is discarded and the value of the real part is converted according to the
conversion rules for the corresponding real type.

6.3.1.8 Usual arithmetic conversions

Many operators that expect operands of arithmetic type cause conversions and yield result
types in a similar way. The purpose is to determicgeramon real typéor the operands

and result. For the specified operands, each operand is converted, without change of type
domain, to a type whose corresponding real type is the common real type. Unless

explicitly stated otherwise, the common real type is also the corresponding real type of

the result, whose type domain is determined by the operator. This pattern is called the

usual arithmetic conversions

First, if the corresponding real type of either operaridrig double , the other
operand is converted, without change of type domain, to a type whose
corresponding real type ishg double

Otherwise, if the corresponding real type of either operamiduble , the other
operand is converted, without change of type domain, to a type whose
corresponding real type iouble .

Otherwise, if the corresponding real type of either operaritbas , the other
operand is converted, without change of type domain, to a type whose
corresponding real type float 42)

42) For example, addition of double _Complex and afloat entails just the conversion of the
float operand talouble (and yields alouble Complex result).

6.3.1.5 Language 6.3.1.8

WG14/N843 Committee Draft — August 3, 1998 39

Otherwise, the integer promotions are performed on both operands. Then the
following rules are applied to the promoted operands:

If both operands have the same type, then no further conversion is needed.

Otherwise, if both operands have signed integer types or both have unsigned
integer types, the operand with the type of lesser integer conversion rank is
converted to the type of the operand with greater rank.

Otherwise, if the operand that has unsigned integer type has rank greater or
equal to the rank of the type of the other operand, then the operand with
signed integer type is converted to the type of the operand with unsigned
integer type.

Otherwise, if the type of the operand with signed integer type can represent
all of the values of the type of the operand with unsigned integer type, then
the operand with unsigned integer type is converted to the type of the
operand with signed integer type.

Otherwise, both operands are converted to the unsigned integer type
corresponding to the type of the operand with signed integer type.

The values of floating operands and of the results of floating expressions may be
represented in greater precision and range than that required by the type; the types are not
changed therelf{f)

6.3.2 Other operands

6.3.2.1 Lvalues and function designators

Anlvalueis an expression with an object type or an incomplete type othevaidhn
if an Ivalue does not designate an object when it is evaluated, the behavior is undefined.
When an object is said to have a particular type, the type is specified by the Ivalue used to
designate the object. modifiable Ivaluds an Ivalue that does not have array type, does
not have an incomplete type, does not have a const-qualified type, and if it is a structure
or union, does not have any member (including, recursively, any member or element of
all contained aggregates or unions) with a const-qualified type.

44)

Except when it is the operand of thigeof operator, the unank operator, the++
operator, the- operator, or the left operand of theoperator or an assignment operator,
an Ivalue that does not have array type is converted to the value stored in the designated

43) The cast and assignment operators are still required to perform their specified conversions as
described in 6.3.1.4 and 6.3.1.5.

44) The name “lvalue” comes originally from the assignment expres&ibaE2 , in which the left
operancEl is required to be a (modifiable) Ivalue. It is perhaps better considered as representing an
object “locator value”. What is sometimes called “rvalue” is in this International Standard described
as the “value of an expression”.

An obvious example of an Ivalue is an identifier of an object. As a further examplés & unary
expression that is a pointer to an objéEt,is an lvalue that designates the object to whigioints.

6.3.1.8 Language 6.3.2.1

40 Committee Draft — August 3, 1998 WG14/N843

object (and is no longer an Ivalue). If the Ivalue has qualified type, the value has the
unqualified version of the type of the Ivalue; otherwise, the value has the type of the
Ivalue. If the Ivalue has an incomplete type and does not have array type, the behavior is
undefined.

Except when it is the operand of thieeof operator or the unar& operator, or is a

string literal used to initialize an array, an expression that has type “arrgyp@fis
converted to an expression with type “pointetytpe’ that points to the initial element of

the array object and is not an Ivalue. If the array object has register storage class, the
behavior is undefined.

A function designatoiis an expression that has function type. Except when it is the
operand of thesizeof operatof® or the unary& operator, a function designator with
type “function returningtyp€’ is converted to an expression that has type “pointer to
function returningyp¥€'.

Forward references: address and indirection operators (6.5.3.2), assignment operators
(6.5.16), common definitions<stddef.h> (7.17), initialization (6.7.8), postfix
increment and decrement operators (6.5.2.4), prefix increment and decrement operators
(6.5.3.1), thesizeof operator (6.5.3.4), structure and union members (6.5.2.3).

6.3.2.2 void

The (nonexistent) value ofv@id expressioiftan expression that has typeid) shall not

be used in any way, and implicit or explicit conversions (excepbid) shall not be
applied to such an expression. If an expression of any other type is evaluated as a void
expression, its value or designator is discarded. (A void expression is evaluated for its
side effects.)

6.3.2.3 Pointers

A pointer tovoid may be converted to or from a pointer to any incomplete or object
type. A pointer to any incomplete or object type may be converted to a poivadto
and back again; the result shall compare equal to the original pointer.

For any qualifielq, a pointer to a nowrqualified type may be converted to a pointer to
the g-qualified version of the type; the values stored in the original and converted pointers
shall compare equal.

An integer constant expression with the value 0, or such an expression caswtmdype

* is called anull pointer constanf® If a null pointer constant is assigned to or
compared for equality to a pointer, the constant is converted to a pointer of that type.
Such a pointer, calledraull pointer, is guaranteed to compare unequal to a pointer to any
object or function.

45) Because this conversion does not occur, the operand Gizibhef operator remains a function
designator and violates the constraint in 6.5.3.4.

46) The macrdNULLis defined incstddef.h> as a null pointer constant; see 7.17.

6.3.2.1 Language 6.3.2.3

WG14/N843 Committee Draft — August 3, 1998 41

Conversion of a null pointer to another pointer type yields a null pointer of that type.
Any two null pointers shall compare equal.

An integer may be converted to any pointer type. The result is implementation-defined,
might not be properly aligned, and might not point to an entity of the referencettype.

Any pointer type may be converted to an integer type; the result is implementation-
defined. If the result cannot be represented in the integer type, the behavior is undefined.
The result need not be in the range of values of any integer type.

A pointer to an object or incomplete type may be converted to a pointer to a different
object or incomplete type. If the resulting pointer is not correctly alftfjhdar the
pointed-to type, the behavior is undefined. Otherwise, when converted back again, the
result shall compare equal to the original pointer. When a pointer to an object is
converted to a pointer to a character type, the result points to the lowest addressed byte of
the object. Successive increments of the result, up to the size of the object, yield pointers
to the remaining bytes of the object.

A pointer to a function of one type may be converted to a pointer to a function of another
type and back again; the result shall compare equal to the original pointer. If a converted
pointer is used to call a function whose type is not compatible with the pointed-to type,
the behavior is undefined.

Forward references: cast operators (6.5.4), equality operators (6.5.9), simple
assignment (6.5.16.1).

47) The mapping functions for converting a pointer to an integer or an integer to a pointer are intended to
be consistent with the addressing structure of the execution environment.

48) In general, the concept “correctly aligned” is transitive: if a pointer to type A is correctly aligned for a
pointer to type B, which in turn is correctly aligned for a pointer to type C, then a pointer to type A is
correctly aligned for a pointer to type C.

6.3.2.3 Language 6.3.2.3

42 Committee Draft — August 3, 1998 WG14/N843

6.4 Lexical elements

Syntax
token:
keyword
identifier
constant
string-literal
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator
eachuniversal-character-namehat cannot be one of the above
each non-white-space character that cannot be one of the above

Constraints

Each preprocessing token that is converted to a token shall have the lexical form of a
keyword, an identifier, a constant, a string literal, or a punctuator.

Semantics

A tokenis the minimal lexical element of the language in translation phases 7 and 8. The
categories of tokens are: keywords, identifiers, constants, string literals, and punctuators.
A preprocessing token is the minimal lexical element of the language in translation
phases 3 through 6. The categories of preprocessing token are: header names, identifiers,
preprocessing numbers, character constants, string literals, punctuators, and single non-
white-space characters that do not lexically match the other preprocessing token
categoried® Ifa’ or a" character matches the last category, the behavior is undefined.
Preprocessing tokens can be separatedwhite spacg this consists of comments
(described later), awhite-space characterspace, horizontal tab, new-line, vertical tab,

and form-feed), or both. As described in 6.10, in certain circumstances during translation
phase 4, white space (or the absence thereof) serves as more than preprocessing token
separation. White space may appear within a preprocessing token only as part of a
header name or between the quotation characters in a character constant or string literal.

If the input stream has been parsed into preprocessing tokens up to a given character, the
next preprocessing token is the longest sequence of characters that could constitute a
preprocessing token. There is one exception to this rule: a header name preprocessing
token is only recognized within#include preprocessing directive, and within such a

49) An additional category, placemarkers, is used internally in translation phase 4 (see 6.10.3.3); it cannot
occur in source files.

6.4 Language 6.4

WG14/N843 Committee Draft — August 3, 1998 43

directive, a sequence of characters that could be either a header name or a string literal is
recognized as the former.

EXAMPLE 1 The program fragmeritEx is parsed as a preprocessing number token (one that is not a
valid floating or integer constant token), even though a parse as the pair of preprocessint) amkkes

might produce a valid expression (for examplé&xfwere a macro defined ad). Similarly, the program
fragmentlE1 is parsed as a preprocessing number (one that is a valid floating constant token), whether or
notE is a macro name.

EXAMPLE 2 The program fragmemtt++++y is parsed ag ++ ++ + y , which violates a constraint on
increment operators, even though the parse + ++ y might yield a correct expression.

Forward references: character constants (6.4.4.4), comments (6.4.9), expressions (6.5),
floating constants (6.4.4.2), header names (6.4.7), macro replacement (6.10.3), postfix
increment and decrement operators (6.5.2.4), prefix increment and decrement operators
(6.5.3.1), preprocessing directives (6.10), preprocessing numbers (6.4.8), string literals
(6.4.5).

6.4.1 Keywords

Syntax
keyword: one of

auto enum restrict unsigned
break extern return void
case float short volatile
char for signed while
const goto sizeof _Bool
continue if static _Complex
default inline struct _Imaginary
do int switch
double long typedef
else register union

Semantics

The alove tolens (case sensitive) are reserved (in translation phases 7 and 8) for use as
keywords, and shall not be used otherwise.

6.4.2 Identifiers
6.4.2.1 General
Syntax

identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

6.4 Language 6.4.2.1

44 Committee Draft — August 3, 1998 WG14/N843

identifier-nondigit:
nondigit
universal-character-name
other implementation-defined characters

nondigit: one of

a b c d e f g h i j k I m

n o p g r s tuv w Xy z

A B C D EF G H I J K L M

N O P Q R STWUV W X Y Z

digit: one of
0O 1 2 3 4 5 6 7 8 9

Semantics

An identifier is a sequence of nondigit characters (including the underscdbe
lowercase and uppercase Latin letters, and other characters) and digits, which designates
one or more entities as described in 6.2.1. Lower-case and upper-case letters are distinct.
There is no specific limit on the maximum length of an identifier.

Each universal character name in an identifier shall designate a character whose encoding
in ISO/IEC 10646 falls into one of the ranges specified in anA8xThe initial nondigit
character shall not be a universal character name designating a digit. An implementation
may allow multibyte characters that are not part of the required source character set to
appear in identifiers; which characters and their correspondence to universal character
names is implementation defined.

When preprocessing tokens are converted to tokens during translation phase 7, if a
preprocessing token could be converted to either a keyword or an identifier, it is converted
to a keyword.

Implementation limits

As discussed in 5.2.4.1, an implementation may limit the number of significant initial
characters in an identifier; the limit for arternal namdan identifier that has external
linkage) may be more restrictive than that foriaternal name(a macro name or an
identifier that does not have external linkage). The number of significant characters in an
identifier is implementation-defined.

Any identifiers that differ in a significant character are different identifiers. If two
identifiers differ only in nonsignificant characters, the behavior is undefined.

50) On systems in which linkers cannot accept extended characters, an encoding of the universal character
name may be used in forming valid external identifiers. For example, some otherwise unused
character or sequence of characters may be used to encode thea universal character name.
Extended characters may produce a long external identifier.

6.4.2.1 Language 6.4.2.1

WG14/N843 Committee Draft — August 3, 1998 45

Forward references: universal character names (6.4.3), macro replacement (6.10.3).
6.4.2.2 Predefined identifiers
Semantics

The identifier __func_ _ shall be implicitly declared by the translator as if,
immediately following the opening brace of each function definition, the declaration

static const char __func_ [] =" function-namég
appeared, wherfeinction-names the name of the lexically-enclosing functin.

This name is encoded as if the implicit declaration had been written in the source
character set and then translated into the execution character set as indicated in translation
phase 5.

EXAMPLE Consider the code fragment:

#include <stdio.h>
void myfunc(void)

{

printf("%s\n", __func_)
A
}

Each time the function is called, it will print to the standard output stream:

myfunc

Forward references: function definitions (6.9.1).

6.4.3 Universal character names
Syntax

universal-character-name:
\u hex-quad
\U hex-quad hex-quad

hex-quad:
hexadecimal-digit hexadecimal-digit
hexadecimal-digit hexadecimal-digit

Constraints

A universal character name shall not specify a character short identifier in the range
00000000 through 00000020, 0000007F through 000O0OO9F, or 0000D800 through
OOOODFFF inclusive. A universal character name shall not designate a character in the
required character set.

51) Note that since the name func_ _ is reserved for any use by the implementation (7.1.3), if any
other identifier is explicitly declared using the namdunc_ _, the behavior is undefined.

6.4.2.1 Language 6.4.3

46 Committee Draft — August 3, 1998 WG14/N843

Description

Universal character names may be used in identifiers, character constants, and string
literals to designate characters that are not in the required character set.

Semantics

The universal character nasiennnnnnnrdesignates the character whose character short
identifier (as specified by ISO/IEC 10646) mhnnnnnn Similarly, the universal
character nama&u nnnn designates the character whose character short identifier is
000hnnn

6.4.4 Constants
Syntax

constant:
integer-constant
floating-constant
enumeration-constant
character-constant

Constraints

The value of a constant shall be in the range of representable values for its type.
Semantics

Each constant has a type, determined by its form and value, as detailed later.
6.4.4.1 Integer constants

Syntax

integer-constant:
decimal-constant integer-sufg%(t
octal-constant integer-suf'gxt
hexadecimal-constant integer-sugfg

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit
hexadecimal-constant hexadecimal-digit

hexadecimal-prefix:one of
Ox OX

6.4.3 Language 6.4.4.1

WG14/N843 Committee Draft — August 3, 1998 47

nonzero-digit: one of
1 2 3 45 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffi
unsigned-suffix long-long-suffix
long-suffix unsigned-suf(f)bp(
long-long-suffix unsigned-sufgi&

unsigned-suffix:one of
u U

long-suffix: one of
I L

long-long-suffix: one of
Il LL

Description

An integer constant begins with a digit, but has no period or exponent part. It may have a
prefix that specifies its base and a suffix that specifies its type.

A decimal constant begins with a nonzero digit and consists of a sequence of decimal
digits. An octal constant consists of the pré&figptionally followed by a sequence of the
digits 0 through7 only. A hexadecimal constant consists of the prékxor 0X followed

by a sequence of the decimal digits and the lettds A) throughf (or F) with values

10 through 15 respectively.

Semantics

The value of a decimal constant is computed base 10; that of an octal constant, base 8;
that of a hexadecimal constant, base 16. The lexically first digit is the most significant.

The type of an integer constant is the first of the corresponding list in which its value can
be represented.

6.4.4.1 Language 6.4.4.1

48 Committee Draft — August 3, 1998 WG14/N843
Octal or Hexadecimal
Suffix Decimal Constant Constant
none int int
long int umsigned int
long long int long int
unsigned long int
long long int
unsigned long long int
uoru unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int unsigned long long int
| orL long int long int
long long int unsigned long int
long long int
unsigned long long int
Both u or U unsigned long int unsigned long int
and | or L unsigned long long int unsigned long long int
I or LL long long int long long int
unsigned long long int
Both u or U unsigned long long int unsigned long long int
and Il or LL

If an integer constant cannot be represented by any type in its list, it may have an
extended integer type, if the extended integer type can represent its value. If all of the
types in the list for the constant are signed, the extended integer type shall be signed. If
all of the types in the list for the constant are unsigned, the extended integer type shall be
unsigned. If the list contains both signed and unsigned types, the extended integer type
may be signed or unsigned.

6.4.4.2 Floating constants

Syntax

floating-constant:
decimal-floating-constant
hexadecimal-floating-constant

6.4.4.1

Language

6.4.4.2

WG14/N843 Committee Draft — August 3, 1998 49

decimal-floating-constant:
fractional-constant exponent-p E)tt floating-suffi>6 ot
digit-sequence exponent-part oating-s%mx
hexadecimal-floating-constant:
hexadecimal-prefix hexadecimal-fractional-constant
binary-exponent-part floating-sufgixt
hexadecimal-prefix hexadecimal-digit-seauence
binary-exponent-part floating-sufge)(t

fractional-constant:
d!g!t-sequenc(gpt
digit-sequence.
exponent-part:
e sign_ . digit-sequence
2opt LY
E S|gnopt digit-sequence

digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit
hexadecimal-fractional-constant:
hexadecimal-digit-sequen get
hexadecimal-digit-sequence
hexadecimal-digit-sequence

binary-exponent-part:
p sign_ . digit-sequence
~opt .2
P S|gnopt digit-sequence
hexadecimal-digit-sequence:
hexadecimal-digit
hexadecimal-digit-sequence hexadecimal-digit

floating-suffix: one of
f I F L

Description

A floating constant hassagnificand partthat may be followed by agxponent parand a

suffix that specifies its type. The components of the significand part may include a digit
sequence representing the whole-number part, followed by a pepiotbljowed by a

digit sequence representing the fraction part. The components of the exponent part are an
e, E, p, or P followed by an exponent consisting of an optionally signed digit sequence.
Either the whole-number part or the fraction part has to be present; for decimal floating
constants, either the period or the exponent part has to be present.

6.4.4.2 Language 6.4.4.2

50 Committee Draft — August 3, 1998 WG14/N843

Semantics

The significand part is interpreted as a (decimal or hexadecimal) rational number; the
digit sequence in the exponent part is interpreted as a decimal integer. For decimal
floating constants, the exponent indicates the power of 10 by which the significand part is
to be scaled. For hexadecimal floating constants, the exponent indicates the power of 2
by which the significand part is to be scaled. For decimal floating constants, and also for
hexadecimal floating constants wHelnT _RADIX is not a power of 2, the result is either

the nearest representable value, or the larger or smaller representable value immediately
adjacent to the nearest representable value, chosen in an implementation-defined manner.
For hexadecimal floating constants whiebhT_RADIX is a power of 2, the result is
correctly rounded.

An unsuffixed floating constant has tyg@uble . If suffixed by the lettef or F, it has
typefloat . If suffixed by the lettel orL, it has typdong double

Recommended practice

The implementation should produce a diagnostic message if a hexadecimal constant
cannot be represented exactly in its evaluation format; the implementation should then
proceed with the translation of the program.

The translation-time conversion of floating constants should match the execution-time
conversion of character strings by library functions, sucktidsd , given matching
inputs suitable for both conversions, the same result format, and default execution-time
rounding®?

6.4.4.3 Enumeration constants
Syntax

enumeration-constant:
identifier

Semantics

An identifier declared as an enumeration constant hasritype
Forward references: enumeration specifiers (6.7.2.2).
6.4.4.4 Character constants

Syntax

character-constant:
' c-char-sequence
L’ c-char-sequence

52) The specification for the library functions recommends more accurate conversion than required for
floating constants (see 7.20.1.3).

6.4.4.2 Language 6.4.4.4

WG14/N843 Committee Draft — August 3, 1998 51

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except
the single-quoté, backslash , or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

simple-escape-sequencene of
L R VAR
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

Description

An integer character constant is a sequence of one or more multibyte characters enclosed
in single-quotes, as iix’ or’'ab’ . A wide character constant is the same, except
prefixed by the lettdr. With a few exceptions detailed later, the elements of the sequence
are any members of the source character set; they are mapped in an implementation-
defined manner to members of the execution character set.

The single-quoté , the double-quotée', the question-mark?, the backslash , and
arbitrary integer values, are representable according to the following table of escape
sequences:

single quoté \

double quoté \"

guestion mark \?
backslash \\

octal character \ octal digits

hexadecimal character \x hexadecimal digits

The double-quote and question-marR are representable either by themselves or by the
escape sequenc®s and\? , respectively, but the single-quoteand the backslash
shall be represented, respectively, by the escape seqienaad\\ .

6.4.4.4 Language 6.4.4.4

10

11

52 Committee Draft — August 3, 1998 WG14/N843

The octal digits that follow the backslash in an octal escape sequence are taken to be part
of the construction of a single character for an integer character constant or of a single
wide character for a wide character constant. The numerical value of the octal integer so
formed specifies the value of the desired character or wide character.

The hexadecimal digits that follow the backslash and the leitea hexadecimal escape
sequence are taken to be part of the construction of a single character for an integer
character constant or of a single wide character for a wide character constant. The
numerical value of the hexadecimal integer so formed specifies the value of the desired
character or wide character.

Each octal or hexadecimal escape sequence is the longest sequence of characters that can
constitute the escape sequence.

In addition, graphic characters not in the required character set are representable by
universal character names and certain nongraphic characters are representable by escape
sequences consisting of the backsladgbllowed by a lowercase letteia ,\b , \f , \n ,

\r ,\t ,and\v .5

Constraints

The value of an octal or hexadecimal escape sequence shall be in the range of
representable values for the tyesigned char ~ for an integer character constant, or
the unsigned type correspondingitohar t for a wide character constant.

Semantics

An integer character constant has tyge . The value of an integer character constant
containing a single character that maps to a member of the basic execution character set is
the numerical value of the representation of the mapped character interpreted as an
integer. The value of an integer character constant containing more than one character, or
containing a character or escape sequence not represented in the basic execution character
set, is implementation-defined. If an integer character constant contains a single
character or escape sequence, its value is the one that results when an object with type
char whose value is that of the single character or escape sequence is converted to type
int

A wide character constant has typechar t , an integer type defined in the
<stddef.h> header. The value of a wide character constant containing a single
multibyte character that maps to a member of the extended execution character set is the
wide character(code) corresponding to that multibyte character, as defined by the
mbtowc function, with an implementation-defined current locale. The value of a wide
character constant containing more than one multibyte character, or containing a
multibyte character or escape sequence not represented in the extended execution
character set, is implementation-defined.

53) The semantics of these characters were discussed in 5.2.2. If any other character follows a backslash,
the result is not a token and a diagnostic is required. See “future language directions” (6.11.1).

6.4.4.4 Language 6.4.4.4

12

13

14

15

WG14/N843 Committee Draft — August 3, 1998 53

EXAMPLE 1 The constructioA0’ is commonly used to represent the null character.

EXAMPLE 2 Consider implementations that use two’s-complement representation for integers and eight
bits for objects that have typhar . In an implementation in which typehar has the same range of
values asigned char |, the integer character constadwtF has the value —1; if typehar has the

same range of values assigned char |, the character constaltFF’ has the value +255 .

EXAMPLE 3 Even if eight bits are used for objects that have tjpe , the constructiori\x123’

specifies an integer character constant containing only one character, since a hexadecimal escape sequence
is terminated only by a non-hexadecimal character. To specify an integer character constant containing the
two characters whose values &xd2’ and'3’ , the constructiofi0223’ may be used, since an octal

escape sequence is terminated after three octal digits. (The value of this two-character integer character
constant is implementation-defined.)

EXAMPLE 4 Even if 12 or more bits are used for objects that have wghwar t , the construction
L\1234' specifies the implementation-defined value that results from the combination of the values
0123 and’4’

Forward references: common definitions<stddef.n> (7.17), thembtowc function
(7.20.7.2).

6.4.5 String literals
Syntax

string-literal:
" s-char-sequen% t
L" s-char-sequen %t

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except
the double-quot&, backslash , or new-line character
escape-sequence

Description

A character string literalis a sequence of zero or more multibyte characters enclosed in
double-quotes, as itxyz" . A wide string literalis the same, except prefixed by the
letterL.

The same considerations apply to each element of the sequence in a character string
literal or a wide string literal as if it were in an integer character constant or a wide
character constant, except that the single-quagerepresentable either by itself or by the
escape sequente , but the double-quoté shall be represented by the escape sequence

\" .

6.4.4.4 Language 6.4.5

54 Committee Draft — August 3, 1998 WG14/N843

Semantics

In translation phase 6, the multibyte character sequences specified by any sequence of
adjacent character and wide string literal tokens are concatenated into a single multibyte
character sequence. If any of the tokens are wide string literal tokens, the resulting
multibyte character sequence is treated as a wide string literal; otherwise, it is treated as a
character string literal.

In translation phase 7, a byte or code of value zero is appended to each multibyte
character sequence that results from a string literal or li®alEhe multibyte character
sequence is then used to initialize an array of static storage duration and length just
sufficient to contain the sequence. For character string literals, the array elements have
type char , and are initialized with the individual bytes of the multibyte character
sequence; for wide string literals, the array elements have wgpar t , and are
initialized with the sequence of wide characters corresponding to the multibyte character
sequence, as defined by théstowcs function with an implementation-defined current
locale. The value of a string literal containing a multibyte character or escape sequence
not represented in the execution character set is implementation-defined.

It is unspecified whether these arrays are distinct provided their elements have the
appropriate values. If the program attempts to modify such an array, the behavior is
undefined.

EXAMPLE This pair of adjacent character string literals
"\x12" "3"

produces a single character string literal containing the two characters whose valwd®'are and’3’ ,
because escape sequences are converted into single members of the execution character set just prior to
adjacent string literal concatenation.

Forward references: common definitionsstddef.n> (7.17).
6.4.6 Punctuators
Syntax

punctuator: one of

1)y {1 . -
* 4

++ - & o
I % << > < > <= >= == I= ~ | && ||
? oL
= *= /= 0= += = <<= >>= &= "= |:
H H##

< > <% %> 9%: 9%:%:

54) A character string literal need not be a string (see 7.1.1), because a null character may be embedded in
it by a\0 escape sequence.

6.4.5 Language 6.4.6

WG14/N843 Committee Draft — August 3, 1998 55

Semantics

A punctuator is a symbol that has independent syntactic and semantic significance.
Depending on context, it may specify an operation to be performed (which in turn may
yield a value or a function designator, produce a side effect, or some combination thereof)
in which case it is known as aperator (other forms of operator also exist in some
contexts). Aroperandis an entity on which an operator acts.

In all aspects of the language, these six tokens
< > <% %> %: %:%:

behave, respectively, the same as these six tokens
[1 { } # ##

except for their spelling®

Forward references: expressions (6.5), declarations (6.7), preprocessing directives
(6.10), statements (6.8).

6.4.7 Header names
Syntax

header-name:
<h-char-sequence
" g-char-sequence

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except
the new-line character arxd

g-char-sequence:
g-char
g-char-sequence g-char

g-char:
any member of the source character set except
the new-line character arid

Semantics

The sequences in both forms of header names are mapped in an implementation-defined
manner to headers or external source file names as specified in 6.10.2.

55) Thus[and<: behave differently when “stringized” (see 6.10.3.2), but can otherwise be freely
interchanged.

6.4.6 Language 6.4.7

56 Committee Draft — August 3, 1998 WG14/N843

If the characters,\ ,",// , or/* occur in the sequence between thend> delimiters,
the behavior is undefined. Similarly, if the characters\, // , or /* occur in the
sequence between tHe delimiters, the behavior is undefin®. A header name
preprocessing token is recognized only with#ireclude preprocessing directive.

EXAMPLE The following sequence of characters:

0Ox3<l/a.h>1e2
#include <1/a.h>
#define const.member@$

forms the following sequence of preprocessing tokens (with each individual preprocessing token delimited
by a{ on the left and & on the right).

{Ox3 {<H1K/ HaH. Hh{>H1le2}
{#{include 1} {<l/a.h> }
{#}{define } {const {.}{ member{@{$}

Forward references: source file inclusion (6.10.2).

6.4.8 Preprocessing numbers

Syntax
pp-number:
digit
digit

pp-number digit
pp-number identifier-nondigit
pp-numbere sign
pp-number E sign
pp-numberp sign
pp-number P sign
pp-number.

Description

A preprocessing humber begins with a digit optionally preceded by a pejiadd may
be followed by letters, underscores, digits, periods,eance- , E+, E-, p+, p-, P+, or
P- character sequences.

Preprocessing number tokens lexically include all floating and integer constant tokens.
Semantics

A preprocessing number does not have type or a value; it acquires both after a successful
conversion (as part of translation phase 7) to a floating constant token or an integer
constant token.

56) Thus, sequences of characters that resemble escape sequences cause undefined behavior.

6.4.7 Language 6.4.8

WG14/N843 Committee Draft — August 3, 1998 57

6.4.9 Comments

Except within a character constant, a string literal, or a comment, the characters
introduce a comment. The contents of a comment are examined only to identify
multibyte characters and to find the charactérshat terminate it

Except within a character constant, a string literal, or a comment, the charhcters
introduce a comment that includes all multibyte characters up to, but not including, the
next new-line character. The contents of such a comment are examined only to identify
multibyte characters and to find the terminating new-line character.

EXAMPLE 1
"allb" I four-character string literal
#include "//e" I undefined behavior
I* I comment, not syntax error
f = g/*llh; i equivalenttd = g / h;
N
i0); 1l part of a two-line comment
N
1 j0; I part of a two-line comment
#define glue(x,y) x##ty
glue(/,)) k(); 1 syntax error, not comment
T*II*11(); I equivalent td();
m = n//**/o
+ p; /I equivalenttan = n + p;
57) Thus/* ... */ comments do not nest.

6.4.9 Language 6.4.9

58 Committee Draft — August 3, 1998 WG14/N843

6.5 Expressions

An expressions a sequence of operators and operands that specifies computation of a
value, or that designates an object or a function, or that generates side effects, or that
performs a combination thereof.

Between the previous and next sequence point an object shall have its stored value
modified at most once by the evaluation of an expression. Furthermore, the prior value
shall be accessed only to determine the value to be SBrddformative annex D
presents an algorithm for determining whether an expression or set of expressions meets
these requirements.

The grouping of operators and operands is indicated by the Syhtaxcept as specified
later (for the function-call) , && || ,?: , and comma operators), the order of evaluation
of subexpressions and the order in which side effects take place are both unspecified.

Some operators (the unary operdtorand the binary operators<, >>, &, ~, and| ,
collectively described abitwise operators are required to have operands that have
integer type. These operators return values that depend on the internal representations of
integers, and have implementation-defined and undefined aspects for signed types.

If an exceptionoccurs during the evaluation of an expression (that is, if the result is not
mathematically defined or not in the range of representable values for its type), the
behavior is undefined.

Theeffective typef an object for an access to its stored value is the declared type of the
object, if any’?) If a value is stored into an object having no declared type through an
Ivalue having a type that is not a character type, then the type of the Ivalue becomes the
effective type of the object for that access and for subsequent accesses that do not modify

58) This paragraph renders undefined statement expressions such as

i = ++i+1;
ali++] = 1i;

while allowing

=i+ 1
alil=1i;

59) The syntax specifies the precedence of operators in the evaluation of an expression, which is the same
as the order of the major subclauses of this subclause, highest precedence first. Thus, for example, the
expressions allowed as the operands of the biraperator (6.5.6) are those expressions defined in
6.5.1 through 6.5.6. The exceptions are cast expressions (6.5.4) as operands of unary operators
(6.5.3), and an operand contained between any of the following pairs of operators: grouping
parenthese§ (6.5.1), subscripting brackefis (6.5.2.1), function-call parenthesgs (6.5.2.2), and
the conditional operatdt: (6.5.15).

Within each major subclause, the operators have the same precedence. Left- or right-associativity is
indicated in each subclause by the syntax for the expressions discussed therein.

60) Allocated objects have no declared type.

6.5 Language 6.5

WG14/N843 Committee Draft — August 3, 1998 59

the stored value. If a value is copied into an object having no declared type using
memcpy or memmoveor is copied as an array of character type, then the effective type

of the modified object for that access and for subsequent accesses that do not modify the
value is the effective type of the object from which the value is copied, if it has one. For
all other accesses to an object having no declared type, the effective type of the object is
simply the type of the Ivalue used for the access.

An object shall have its stored value accessed only by an Ivalue expression that has one of
the following type$?)

— atype compatible with the effective type of the object,
— a qualified version of a type compatible with the effective type of the object,

— a type that is the signed or unsigned type corresponding to the effective type of the
object,

— a type that is the signed or unsigned type corresponding to a qualified version of the
effective type of the object,

— an aggregate or union type that includes one of the aforementioned types among its
members (including, recursively, a member of a subaggregate or contained union), or

— a character type.

A floating expression may klmntracted that is, evaluated as though it were an atomic
operation, thereby omitting rounding errors implied by the source code and the
expression evaluation meth®d. The FP_ CONTRACPragma incmath.h> provides a

way to disallow contracted expressions. Otherwise, whether and how expressions are
contracted is implementation-defin&H.

6.5.1 Primary expressions
Syntax
primary-expression:
identifier
constant

string-literal
(expression

Semantics

61) The intent of this list is to specify those circumstances in which an object may or may not be aliased.
62) A contracted expression might also omit the raising of floating-point exception flags.

63) This license is specifically intended to allow implementations to exploit fast machine instructions that
combine multiple C operators. As contractions potentially undermine predictability, and can even
decrease accuracy for containing expressions, their use needs to be well-defined and clearly
documented.

6.5 Language 6.5.1

60 Committee Draft — August 3, 1998 WG14/N843

An identifier is a primary expression, provided it has been declared as designating an
object (in which case it is an Ivalue) or a function (in which case it is a function
designatorf®

A constant is a primary expression. Its type depends on its form and value, as detailed in
6.4.4.

A string literal is a primary expression. Itis an Ivalue with type as detailed in 6.4.5.

A parenthesized expression is a primary expression. Its type and value are identical to
those of the unparenthesized expression. It is an Ivalue, a function designator, or a void
expression if the unparenthesized expression is, respectively, an Ivalue, a function
designator, or a void expression.

Forward references: declarations (6.7).

6.5.2 Postfix operators
Syntax

postfix-expression:
primary-expression
postfix-expressiorf expressior}
postfix-expression argument-expression-lig, t)
postfix-expression identifier
postfix-expression> identifier
postfix-expressiont++
postfix-expression-
(type-namg { initializer-list }
(type-namg { Iinitializer-list, }

argument-expression-list:
assignment-expression
argument-expression-listassignment-expression

6.5.2.1 Array subscripting
Constraints

One of the expressions shall have type “pointer to obypet, the other expression shall
have integer type, and the result has typypé€'.

Semantics

A postfix expression followed by an expression in square brafkets a subscripted
designation of an element of an array object. The definition of the subscript ojflerator
is thatE1[E2] is identical to(*((E1)+(EZ2))) . Because of the conversion rules that
apply to the binary+ operator, ifE1 is an array object (equivalently, a pointer to the
initial element of an array object) ai® is an integerE1[E2] designates th&2-th
element ofE1 (counting from zero).

64) Thus, an undeclared identifier is a violation of the syntax.

6.5.1 Language 6.5.2.1

WG14/N843 Committee Draft — August 3, 1998 61

Successive subscript operators designate an element of a multidimensional array object.
If Eis ann-dimensional arraynz2) with dimensionsxjx ... xk, thenE (used as other

than an Ivalue) is converted to a pointer to anlj-dimensional array with dimensions

jx ... xk. If the unary* operator is applied to this pointer explicitly, or implicitly as a
result of subscripting, the result is the pointedrtel()-dimensional array, which itself is
converted into a pointer if used as other than an Ivalue. It follows from this that arrays
are stored in row-major order (last subscript varies fastest).

EXAMPLE Consider the array object defined by the declaration

int x[3][5];
Herex is a X5 array ofint s; more precisely is an array of three element objects, each of which is an
array of fiveint s. In the expressiox[i] , which is equivalent t¢*((x)+(i))) , X Is first converted to

a pointer to the initial array of fiiat s. Then is adjusted according to the typexgfwhich conceptually
entails multiplyingi by the size of the object to which the pointer points, namely an array ahfiive
objects. The results are added and indirection is applied to yield an array iof fiseWhen used in the
expressior[i][j] , that array is in turn converted to a pointer to the first ofinhes, sox][i][j]

yields anint .

Forward references: additive operators (6.5.6), address and indirection operators
(6.5.3.2), array declarators (6.7.5.2).

6.5.2.2 Function calls
Constraints

The expression that denotes the called fun®tisshall have type pointer to function
returningvoid or returning an object type other than an array type.

If the expression that denotes the called function has a type that includes a prototype, the
number of arguments shall agree with the number of parameters. Each argument shall
have a type such that its value may be assigned to an object with the unqualified version
of the type of its corresponding parameter.

Semantics

A postfix expression followed by parenthegpscontaining a possibly empty, comma-
separated list of expressions is a function call. The postfix expression denotes the called
function. The list of expressions specifies the arguments to the function.

An argument may be an expression of any object type. In preparing for the call to a
function, the arguments are evaluated, and each parameter is assigned the value of the
corresponding argumeff)

65) Most often, this is the result of converting an identifier that is a function designator.

66) A function may change the values of its parameters, but these changes cannot affect the values of the
arguments. On the other hand, it is possible to pass a pointer to an object, and the function may
change the value of the object pointed to. A parameter declared to have array or function type is
converted to a parameter with a pointer type as described in 6.9.1.

6.5.2.1 Language 6.5.2.2

10

11

12

62 Committee Draft — August 3, 1998 WG14/N843

If the expression that denotes the called function has type pointer to function returning an
object type, the function call expression has the same type as that object type, and has the
value determined as specified in 6.8.6.4. Otherwise, the function call hagotype If

an attempt is made to modify the result of a function call or to access it after the next
sequence point, the behavior is undefined.

If the expression that denotes the called function has a type that does not include a
prototype, the integer promotions are performed on each argument, and arguments that
have typefloat are promoted tadouble . These are called thdefault argument
promotions If the number of arguments does not agree with the number of parameters,
the behavior is undefined. If the function is defined with a type that includes a prototype,
and either the prototype ends with an ellipsis.() or the types of the arguments after
promotion are not compatible with the types of the parameters, the behavior is undefined.
If the function is defined with a type that does not include a prototype, and the types of
the arguments after promotion are not compatible with those of the parameters after
promotion, the behavior is undefined, except for the following cases:

— one promoted type is a signed integer type, the other promoted type is the
corresponding unsigned integer type, and the value is representable in both types;

— one type is pointer to void and the other is a pointer to a character type.

If the expression that denotes the called function has a type that does include a prototype,
the arguments are implicitly converted, as if by assignment, to the types of the
corresponding parameters, taking the type of each parameter to be the unqualified version
of its declared type. The ellipsis notation in a function prototype declarator causes
argument type conversion to stop after the last declared parameter. The default argument
promotions are performed on trailing arguments.

No other conversions are performed implicitly; in particular, the number and types of
arguments are not compared with those of the parameters in a function definition that
does not include a function prototype declarator.

If the function is defined with a type that is not compatible with the type (of the
expression) pointed to by the expression that denotes the called function, the behavior is
undefined.

The order of evaluation of the function designator, the actual arguments, and
subexpressions within the actual arguments is unspecified, but there is a sequence point
before the actual call.

Recursive function calls shall be permitted, both directly and indirectly through any chain
of other functions.

EXAMPLE In the function call
(*pflf10]) (f20, f3() + f4()

the functiond1 , f2 , f3 , andf4 may be called in any order. All side effects have to be completed before
the function pointed to bgf[f1()] is called.

6.5.2.2 Language 6.5.2.2

WG14/N843 Committee Draft — August 3, 1998 63

Forward references: function declarators (including prototypes) (6.7.5.3), function
definitions (6.9.1), theeturn statement (6.8.6.4), simple assignment (6.5.16.1).

6.5.2.3 Structure and union members
Constraints

The first operand of the operator shall have a qualified or unqualified structure or union
type, and the second operand shall name a member of that type.

The first operand of the> operator shall have type “pointer to qualified or unqualified
structure” or “pointer to qualified or unqualified union”, and the second operand shall
name a member of the type pointed to.

Semantics

A postfix expression followed by theoperator and an identifier designates a member of

a structure or union object. The value is that of the named member, and is an Ivalue if the
first expression is an Ivalue. If the first expression has qualified type, the result has the
so-qualified version of the type of the designated member.

A postfix expression followed by the operator and an identifier designates a member
of a structure or union object. The value is that of the named member of the object to
which the first expression points, and is an Iv&fddf the first expression is a pointer to

a gqualified type, the result has the so-qualified version of the type of the designated
member.

With one exception, if the value of a member of a union object is used when the most
recent store to the object was to a different member, the behavior is
implementation-define®f) One special guarantee is made in order to simplify the use of
unions: If a union contains several structures that share a common initial sequence (see
below), and if the union object currently contains one of these structures, it is permitted to
inspect the common initial part of any of them anywhere that a declaration of the
completed type of the union is visible. Two structures shamranon initial sequenadé
corresponding members have compatible types (and, for bit-fields, the same widths) for a
sequence of one or more initial members.

EXAMPLE 1 If f is a function returning a structure or union, ands a member of that structure or
union,f().x is a valid postfix expression but is not an Ivalue.

EXAMPLE 2 In:

67) If &Eis a valid pointer expression (whefeas the “address-of” operator, which generates a pointer to
its operand), the expressi@RE)->MOS is the same a&.MOS

68) The “byte orders” for scalar types are invisible to isolated programs that do not indulge in type
punning (for example, by assigning to one member of a union and inspecting the storage by accessing
another member that is an appropriately sized array of character type), but have to be accounted for
when conforming to externally imposed storage layouts.

6.5.2.2 Language 6.5.2.3

64

Committee Draft — August 3, 1998

struct s { inti; constint ci; };
struct s s;

const struct s cs;
volatile struct s vs;

the various members have the types:

S.i
s.Ci
cs.i

const int
const int

cs.ci const int

VS.i

volatile int

vs.ci volatile const int

8 EXAMPLE 3 The following is a valid fragment:

union {
struct {
int alltypes;
}on
struct {
int type;
int intnode;
} ni;
struct {
int type;
double doublenode;
} nf;
by
u.nf.type = 1;

u.nf.doublenode = 3.14;

*

if (u.n.alltypes == 1)
if (sin(u.nf.doublenode) == 0.0)

*

WG14/N843

The following is not a valid fragment (because the union type is not visible within fufgtion

6.5.2.3

Language

6.5.2.3

WG14/N843 Committee Draft — August 3, 1998 65

struct t1 {int m; };
struct t2 { int m; };
int f(struct t1 * p1, struct t2 * p2)

{
if (p1->m < 0)
p2->m = -p2->m;
return pl1->m;

int g()
{

union {
struct t1 s1;
struct t2 s2;
}ou
|
return f(&u.s1, &u.s2);

Forward references: address and indirection operators (6.5.3.2), structure and union
specifiers (6.7.2.1).

6.5.2.4 Postfix increment and decrement operators
Constraints

The operand of the postfix increment or decrement operator shall have qualified or
unqualified real or pointer type and shall be a modifiable Ivalue.

Semantics

The result of the postfix+ operator is the value of the operand. After the result is
obtained, the value of the operand is incremented. (That is, the value 1 of the appropriate
type is added to it.) See the discussions of additive operators and compound assignment
for information on constraints, types, and conversions and the effects of operations on
pointers. The side effect of updating the stored value of the operand shall occur between
the previous and the next sequence point.

The postfix-- operator is analogous to the postfix operator, except that the value of

the operand is decremented (that is, the value 1 of the appropriate type is subtracted from
it).

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).

6.5.2.5 Compound literals

Constraints

The type name shall specify an object type or an array of unknown size.

No initializer shall attempt to provide a value for an object not contained within the entire
unnamed object specified by the compound literal.

6.5.2.3 Language 6.5.2.5

10

66 Committee Draft — August 3, 1998 WG14/N843

If the compound literal occurs outside the body of a function, the initializer list shall
consist of constant expressions.

Semantics

A postfix expression that consists of a parenthesized type name followed by a brace-
enclosed list of initializers is a compound literal. It provides an unnamed object whose
value is given by the initializer i)

If the type name specifies an array of unknown size, the size is determined by the
initializer list as specified in 6.7.7, and the type of the compound literal is that of the
completed array type. Otherwise (when the type name specifies an object type), the type
of the compound literal is that specified by the type name. In either case, the result is an
Ivalue.

The value of the compound literal is that of an unnamed object initialized by the

initializer list. The object has static storage duration if and only if the compound literal

occurs outside the body of a function; otherwise, it has automatic storage duration
associated with the enclosing block.

All the semantic rules and constraints for initializer lists in 6.7.8 are applicable to
compound literal$?

String literals, and compound literals with const-qualified types, need not designate
distinct objects?

EXAMPLE 1 The file scope definition
int *p = (int [I{2, 4};

initializes p to point to the first element of an array of two ints, the first having the value two and the
second, four. The expressions in this compound literal are required to be constant. The unnamed object
has static storage duration.

EXAMPLE 2 In contrast, in

void f(void)
{
int *p;
[* X
p = (int[2){*p}:
[* X
}

p is assigned the address of the first element of an array of two ints, the first having the value previously
pointed to byp and the second, zero. The expressions in this compound literal need not be constant. The

69) Note that this differs from a cast expression. For example, a cast specifies a conversion to scalar types
orvoid only, and the result of a cast expression is not an lvalue.

70) For example, subobjects without explicit initializers are initialized to zero.

71) This allows implementations to share storage for string literals and constant compound literals with
the same or overlapping representations.

6.5.2.5 Language 6.5.2.5

11

12

13

14

15

16

WG14/N843 Committee Draft — August 3, 1998 67

unnamed object has automatic storage duration.

EXAMPLE 3 Initializers with designations can be combined with compound literals. Structure objects
created using compound literals can be passed to functions without depending on member order:

drawline((struct point){.x=1, .y=1},
(struct point){.x=3, .y=4});

Or, if drawline instead expected pointersstuct point

drawline(&(struct point){.x=1, .y=1},
&(struct point){.x=3, .y=4});

EXAMPLE 4 A read-only compound literal can be specified through constructions like:

(const float []){1e0, 1lel, 1e2, 1e3, 1le4, 1e5, 1e6}

EXAMPLE 5 The following three expressions have different meanings:

"tmp/file X XXX XX"
(char){"tmp/file XXXXXX"}
(const char [J){"/tmp/file XXXXXX"}

The first always has static storage duration and has type archgrof but need not be modifiable; the last
two have automatic storage duration when they occur within the body of a function, and the first of these
two is modifiable.

EXAMPLE 6 Like string literals, const-qualified compound literals can be placed into read-only memory
and can even be shared. For example,

(const char []){"abc"} == "abc"

might yield 1 if the literals’ storage is shared.

EXAMPLE 7 Since compound literals are unnamed, a single compound literal cannot specify a circularly
linked object. For example, there is no way to write a self-referential compound literal that could be used
as the function argument in place of the named objediess_zeros below:

struct int_list { int car; struct int_list *cdr; };
struct int_list endless_zeros = {0, &endless_zeros};
eval(endless_zeros);

EXAMPLE 8 Each compound literal creates only a single object in a given scope:

6.5.2.5 Language 6.5.2.5

17

68 Committee Draft — August 3, 1998 WG14/N843

struct s {inti; };

int f (void)
{

struct s *p = 0, *q;
intj=0;

while (j < 2)

a=p, p = &(struct s){j++});
return p == q && g->i == 1,

}

The functionf() always returns the value 1.

Note that if gor loop were used instead ofwdhile loop, the lifetime of the unnamed object would be
the body of the loop only, and on entry next time aropnglould be pointing to an object which is no
longer guaranteed to exist, which would result in undefined behavior.

6.5.3 Unary operators
Syntax

unary-expression:
postfix-expression
++ unary-expression
-~ unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

unary-operator: one of
& * + - "~ 1

6.5.3.1 Prefix increment and decrement operators
Constraints

The operand of the prefix increment or decrement operator shall have qualified or
unqualified real or pointer type and shall be a modifiable Ivalue.

Semantics

The value of the operand of the prefix operator is incremented. The result is the new
value of the operand after incrementation. The expressiéns equivalent tdE+=1) .

See the discussions of additive operators and compound assignment for information on
constraints, types, side effects, and conversions and the effects of operations on pointers.

The prefix-- operator is analogous to the prefix operator, except that the value of the
operand is decremented.

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).

6.5.2.5 Language 6.5.3.1

WG14/N843 Committee Draft — August 3, 1998 69

6.5.3.2 Address and indirection operators
Constraints

The operand of the una&operator shall be either a function designator, the result of a
[or unary* operator, or an Ivalue that designates an object that is not a bit-field and is
not declared with theegister ~ storage-class specifier.

The operand of the unatyoperator shall have pointer type.
Semantics

The result of the unar§ (address-of) operator is a pointer to the object or function
designated by its operand. If the operand has typee”, the result has type “pointer to

type'. If the operand is the result of a unatryoperator, neither that operator nor te
operator is evaluated, and the result is as if both were omitted, except that the constraints
on the operators still apply and the result is not an Ivalue. Similarly, if the operand is the
result of] operator, neither th& operator nor the unary that is implied by th¢] is
evaluated, and the result is as if ta@perator were removed and tfje operator were
changed to & operator.

The unary* operator denotes indirection. If the operand points to a function, the result is
a function designator; if it points to an object, the result is an Ivalue designating the
object. If the operand has type “pointer typ€’, the result has type type. If an

invalid value has been assigned to the pointer, the behavior of the *urgrgrator is
undefined’?

Forward references: storage-class specifiers (6.7.1), structure and union specifiers
(6.7.2.1).

6.5.3.3 Unary arithmetic operators
Constraints

The operand of the unatyor - operator shall have arithmetic type; of theperator,
integer type; of thé operator, scalar type.

Semantics

The result of the unary operator is the value of its (promoted) operand. The integer
promotions are performed on the operand, and the result has the promoted type.

72) Thus,&*E is equivalent tcE (even ifE is a null pointer), an&(E1[E2]) to ((E1)+(E2)) .ltis
always true that ifE is a function designator or an Ivalue that is a valid operand of the &nary
operator*&E is a function designator or an Ivalue equaktdf *P is an lvalue and is the name of
an object pointer typé&(T)P is an Ivalue that has a type compatible with that to whipbints.

Among the invalid values for dereferencing a pointer by the uhasgerator are a null pointer, an
address inappropriately aligned for the type of object pointed to, and the address of an automatic
storage duration object when execution of the block with which the object is associated has
terminated.

6.5.3.2 Language 6.5.3.3

70 Committee Draft — August 3, 1998 WG14/N843

The result of the unary operator is the negative of its (promoted) operand. The integer
promotions are performed on the operand, and the result has the promoted type.

The result of thé operator is the bitwise complement of its (promoted) operand (that is,
each bit in the result is set if and only if the corresponding bit in the converted operand is
not set). The integer promotions are performed on the operand, and the result has the
promoted type. If the promoted type is an unsigned type, the expréSsisrequivalent

to the maximum value representable in that type nius

The result of the logical negation operators O if the value of its operand compares
unequal to 0, 1 if the value of its operand compares equal to 0. The result hias$ type
The expressiotE is equivalent t§0= =E).

Forward references: characteristics of floating typesfloat.h> (7.7), sizes of
integer typeslimits.h> (7.10).

6.5.3.4 Thesizeof operator
Constraints

Thesizeof operator shall not be applied to an expression that has function type or an
incomplete type, to the parenthesized name of such a type, or to an Ivalue that designates
a bit-field object.

Semantics

The sizeof operator yields the size (in bytes) of its operand, which may be an
expression or the parenthesized name of a type. The size is determined from the type of
the operand. The result is an integer. If the type of the operand is a variable length array
type, the operand is evaluated; otherwise, the operand is not evaluated and the result is an
integer constant.

When applied to an operand that has tper , unsigned char |, orsigned char

(or a qualified version thereof) the result is 1. When applied to an operand that has array
type, the result is the total number of bytes in the dayVhen applied to an operand

that has structure or union type, the result is the total number of bytes in such an object,
including internal and trailing padding.

The value of the result is implementation-defined, and its type (an unsigned integer type)
issize_t ,defined in thecstddef.h> header.
EXAMPLE 1 A principal use of theizeof operator is in communication with routines such as storage

allocators and 1/0 systems. A storage-allocation function might accept a size (in bytes) of an object to
allocate and return a pointertoid . For example:

extern void *alloc(size_t);
double *dp = alloc(sizeof *dp);

The implementation of thalloc function should ensure that its return value is aligned suitably for
conversion to a pointer tiouble .

73) When applied to a parameter declared to have array or function tygeebie operator yields the
size of the pointer obtained by converting as in 6.3.2.1; see 6.9.1.

6.5.3.3 Language 6.5.3.4

WG14/N843 Committee Draft — August 3, 1998 71

EXAMPLE 2 Another use of theizeof operator is to compute the number of elements in an array:

sizeof array / sizeof array[0]

EXAMPLE 3 In this example, the size of a variable-length array is computed and returned from a
function:

size_t fsize3 (int n)

{
char b[n+3]; I Variable length array.
return sizeof b; 1 Execution timesizeof
}
int main()
{ . .
size_t size;
size = fsize3(10); // fsize3 returns 13.
return O;
}

Forward references: common definitions<stddef.h> (7.17), declarations (6.7),
structure and union specifiers (6.7.2.1), type names (6.7.6), array declarators (6.7.5.2).

6.5.4 Cast operators
Syntax

cast-expression:
unary-expression
(type-name) cast-expression

Constraints

Unless the type name specifies a void type, the type name shall specify qualified or
unqualified scalar type and the operand shall have scalar type.

Conversions that involve pointers, other than where permitted by the constraints of
6.5.16.1, shall be specified by means of an explicit cast.

Semantics

Preceding an expression by a parenthesized type name converts the value of the
expression to the named type. This construction is caltEbt{® A cast that specifies
no conversion has no effect on the type or value of an expréssion.

74) A cast does not yield an Ivalue. Thus, a cast to a qualified type has the same effect as a cast to the
unqualified version of the type.

75) If the value of the expression is represented with greater precision or range than required by the type
named by the cast (6.3.1.8), then the cast specifies a conversion even if the type of the expression is
the same as the named type.

6.5.3.4 Language 6.5.4

72 Committee Draft — August 3, 1998 WG14/N843

Forward references: equality operators (6.5.9), function declarators (including
prototypes) (6.7.5.3), simple assignment (6.5.16.1), type names (6.7.6).

6.5.5 Multiplicative operators
Syntax

multiplicative-expression:
cast-expression
multiplicative-expressioh cast-expression
multiplicative-expressioh cast-expression
multiplicative-expressiofiocast-expression

Constraints

Each of the operands shall have arithmetic type. The operands %fogperator shall
have integer type.

Semantics

The usual arithmetic conversions are performed on the operands. If either operand has
complex type, the result has complex type.

The result of the binary operator is the product of the operands.

The result of thé operator is the quotient from the division of the first operand by the
second; the result of ti&operator is the remainder. In both operations, if the value of
the second operand is zero, the behavior is undefined.

When integers are divided, the result of theperator is the algebraic quotient with any
fractional part discarde® If the quotienta/b is representable, the expression
(a/b)*b + a%b shall equah.

6.5.6 Additive operators
Syntax

additive-expression:
multiplicative-expression
additive-expressiost multiplicative-expression
additive-expression multiplicative-expression

Constraints

For addition, either both operands shall have arithmetic type, or one operand shall be a
pointer to an object type and the other shall have integer type. (Incrementing is
equivalent to adding 1.)

For subtraction, one of the following shall hold:

76) This is often called “truncation toward zero”.

6.5.4 Language 6.5.6

WG14/N843 Committee Draft — August 3, 1998 73

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible object
types; or

— the left operand is a pointer to an object type and the right operand has integer type.
(Decrementing is equivalent to subtracting 1.)
Semantics

If both operands have arithmetic type, the usual arithmetic conversions are performed on
them. If either operand has complex type, the result has complex type.

The result of the binary operator is the sum of the operands.

The result of the binary operator is the difference resulting from the subtraction of the
second operand from the first.

For the purposes of these operators, a pointer to a nonarray object behaves the same as a
pointer to the first element of an array of length one with the type of the object as its
element type.

When an expression that has integer type is added to or subtracted from a pointer, the
result has the type of the pointer operand. If the pointer operand points to an element of
an array object, and the array is large enough, the result points to an element offset from
the original element such that the difference of the subscripts of the resulting and original
array elements equals the integer expression. In other words, if the expRepsiats to

the i-th element of an array object, the expressidh)sN (equivalently,N+(P)) and

(P)-N (whereN has the valua) point to, respectively, thie-n-th andi—-n-th elements of

the array object, provided they exist. Moreover, if the expresBipoints to the last
element of an array object, the expresg®)y*1 points one past the last element of the
array object, and if the expressiQpoints one past the last element of an array object,
the expressioffQ)-1 points to the last element of the array object. If both the pointer
operand and the result point to elements of the same array object, or one past the last
element of the array object, the evaluation shall not produce an overflow; otherwise, the
behavior is undefined. If the result points one past the last element of the array object, it
shall not be used as the operand of a uhargerator that is evaluated.

When two pointers are subtracted, both shall point to elements of the same array object,
or one past the last element of the array object; the result is the difference of the
subscripts of the two array elements. The size of the result is implementation-defined,
and its type (a signed integer typeptsdiff t defined in the<stddef.h> header.

If the result is not representable in an object of that type, the behavior is undefined. In
other words, if the expressioRsaandQpoint to, respectively, thieth andj-th elements of

an array object, the expressii)-(Q) has the valué-j provided the value fits in an
object of typeptrdiff_t . Moreover, if the expression points either to an element of

an array object or one past the last element of an array object, and the ex)essns

to the last element of the same array object, the exprg¢Qpl)-(P) has the same
value as((Q)-(P))+1 and as-((P)-((Q)+1)) , and has the value zero if the
expressionP points one past the last element of the array object, even though the

6.5.6 Language 6.5.6

74 Committee Draft — August 3, 1998 WG14/N843

expressiorfQ)+1 does not point to an element of the array objéct.
10 EXAMPLE Pointer arithmetic is well defined with pointers to variable length array types.

{
intn=4, m=3;
int a[n][m];
int *p)[m] =a; //p==&a[0]
p += 1, Il p == &a[l]
(*p)[2] = 99; II'a[1][2] == 99
n=p-a, /I n ==

}

11 If arraya in the alove example were declared to be an array of known constant size, and poiméze
declared to be a pointer to an array of the same known constant size (poi)nghe results would be
the same.

Forward references: array declarators (6.7.5.2), common definiticregddef.h>
(7.17).

6.5.7 Bitwise shift operators
Syntax

1 shift-expression:
additive-expression
shift-expressior< additive-expression
shift-expressior> additive-expression

Constraints
2 Each of the operands shall have integer type.
Semantics

3 The integer promotions are performed on each of the operands. The type of the result is
that of the promoted left operand. If the value of the right operand is negative or is
greater than or equal to the width of the promoted left operand, the behavior is undefined.

4 The result ofEl<<E2 is E1 left-shifted E2 bit positions; vacated bits are filled with
zeros. IfE1 has an unsigned type, the value of the resultlis 252, reduced modulo
one more than the maximum value representable in the result tygd. hids a signed
type and nonnegative value, aBdl x 252 is representable in the result type, then that is

77) Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In
this scheme the integer expression added to or subtracted from the converted pointer is first multiplied
by the size of the object originally pointed to, and the resulting pointer is converted back to the
original type. For pointer subtraction, the result of the difference between the character pointers is
similarly divided by the size of the object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which may overlap
another object in the program) just after the end of the object in order to satisfy the “one past the last
element” requirements.

6.5.6 Language 6.5.7

WG14/N843 Committee Draft — August 3, 1998 75

the resulting value; otherwise, the behavior is undefined.

The result oE1 >> E2 is E1 right-shiftedE2 bit positions. IfE1 has an unsigned type

or if E1 has a signed type and a nonnegative value, the value of the result is the integral
part of the quotient oE1 divided by the quantity, 2 raised to the povi. If E1 has a
signed type and a negative value, the resulting value is implementation-defined.

6.5.8 Relational operators
Syntax

relational-expression:
shift-expression
relational-expressior shift-expression
relational-expressior shift-expression
relational-expressior= shift-expression
relational-expressiorr= shift-expression

Constraints
One of the following shall hold:
— both operands have real type;

— both operands are pointers to qualified or unqualified versions of compatible object
types; or

— both operands are pointers to qualified or unqualified versions of compatible
incomplete types.

Semantics

If both of the operands have arithmetic type, the usual arithmetic conversions are
performed.

For the purposes of these operators, a pointer to a nonarray object behaves the same as a
pointer to the first element of an array of length one with the type of the object as its
element type.

When two pointers are compared, the result depends on the relative locations in the
address space of the objects pointed to. If two pointers to object or incomplete types both
point to the same object, or both point one past the last element of the same array object,
they compare equal. If the objects pointed to are members of the same aggregate object,
pointers to structure members declared later compare greater than pointers to members
declared earlier in the structure, and pointers to array elements with larger subscript
values compare greater than pointers to elements of the same array with lower subscript
values. All pointers to members of the same union object compare equal. If the
expressiorP points to an element of an array object and the expre§spmints to the

last element of the same array object, the pointer expreQsiticompares greater than

P. In all other cases, the behavior is undefined.

6.5.7 Language 6.5.8

76 Committee Draft — August 3, 1998 WG14/N843

Each of the operators (less than)> (greater than)<= (less than or equal to), and
(greater than or equal to) shall yield 1 if the specified relation is true and 0 if it i¥¥alse.
The result has typat .

6.5.9 Equality operators
Syntax

equality-expression:
relational-expression
equality-expressior = relational-expression
equality-expressiofr relational-expression

Constraints

One of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible types;

— one operand is a pointer to an object or incomplete type and the other is a pointer to a
gualified or unqualified version @bid ; or

— one operand is a pointer and the other is a null pointer constant.
Semantics

The == (equal to) and'= (not equal to) operators are analogous to the relational
operators except for their lower precedefiteEach of the operators yields 1 if the
specified relation is true and O if it is false. The result has ityipe For any pair of
operands, exactly one of the relations is true.

If both of the operands have arithmetic type, the usual arithmetic conversions are
performed. Values of complex types are equal if and only if both their real parts are equal
and also their imaginary parts are equal. Any two values of arithmetic types from
different type domains are equal if and only if the results of their conversion to the
complex type corresponding to the common real type determined by the usual arithmetic
conversions are equal.

Otherwise, at least one operand is a pointer. If one operand is a null pointer constant, it is
converted to the type of the other operand. If one operand is a pointer to an object or
incomplete type and the other is a pointer to a qualified or unqualified versrordof

the former is converted to the type of the latter.

Two pointers compare equal if both are null pointers, both are pointers to the same object
(including a pointer to an object and a subobject at its beginning) or function, both are
pointers to one past the last element of the same array object, or one is a pointer to one

78) The expressioa<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it
meanga<b)<c ;in other words, “ifa is less thatb, compare 1 ta; otherwise, compare 0 tJ'.

79) Because of the precedenaesh == c<d is 1 whenevea<b andc<d have the same truth-value.

6.5.8 Language 6.5.9

WG14/N843 Committee Draft — August 3, 1998 77

past the end of one array object and the other is a pointer to the start of a different array
object that happens to immediately follow the first array object in the addres€¥pace.

6.5.10 BitwiseAND operator
Syntax

AND-expression:
equality-expression
AND-expressiol: equality-expression

Constraints

Each of the operands shall have integer type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of the binar& operator is the bitwis&ND of the operands (that is, each bit in
the result is set if and only if each of the corresponding bits in the converted operands is
set).

6.5.11 Bitwise exclusivé®R operator
Syntax

exclusive-OR-expression:
AND-expression
exclusive-OR-expressiGnAND-expression

Constraints

Each of the operands shall have integer type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of thé operator is the bitwise exclusi@R of the operands (that is, each bit
in the result is set if and only if exactly one of the corresponding bits in the converted
operands is set).

80) Two objects may be adjacent in memory because they are adjacent elements of a larger array or
adjacent members of a structure with no padding between them, or because the implementation chose
to place them so, even though they are unrelated. If prior invalid pointer operations, such as accesses
outside array bounds, produced undefined behavior, the effect of subsequent comparisons is also
undefined.

6.5.9 Language 6.5.11

78 Committee Draft — August 3, 1998 WG14/N843

6.5.12 Bitwise inclusiveOR operator
Syntax

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expressidn exclusive-OR-expression

Constraints

Each of the operands shall have integer type.

Semantics

The usual arithmetic conversions are performed on the operands.

The result of thé¢ operator is the bitwise inclusiv@R of the operands (that is, each bit in
the result is set if and only if at least one of the corresponding bits in the converted
operands is set).

6.5.13 LogicalAND operator
Syntax

logical-AND-expression:
inclusive-OR-expression
logical-AND-expressio&&inclusive-OR-expression

Constraints
Each of the operands shall have scalar type.
Semantics

The && operator shall yield 1 if both of its operands compare unequal to O; otherwise, it
yields 0. The result has typet .

Unlike the bitwise binarg operator, the&& operator guarantees left-to-right evaluation;
there is a sequence point after the evaluation of the first operand. If the first operand
compares equal to 0, the second operand is not evaluated.

6.5.14 LogicalOR operator
Syntax

logical-OR-expression:
logical-AND-expression
logical-OR-expressiof} logical-AND-expression

Constraints
Each of the operands shall have scalar type.
Semantics

6.5.12 Language 6.5.14

WG14/N843 Committee Draft — August 3, 1998 79

The|| operator shall yield 1 if either of its operands compare unequal to O; otherwise, it
yields 0. The result has typat .

Unlike the bitwisg operator, thd| operator guarantees left-to-right evaluation; there is
a sequence point after the evaluation of the first operand. If the first operand compares
unequal to 0, the second operand is not evaluated.

6.5.15 Conditional operator
Syntax

conditional-expression:
logical-OR-expression
logical-OR-expressiofd expression conditional-expression

Constraints

The first operand shall have scalar type.

One of the following shall hold for the second and third operands:

— both operands have arithmetic type;

— both operands have compatible structure or union types;

— both operands have void type;

— both operands are pointers to qualified or unqualified versions of compatible types;
— one operand is a pointer and the other is a null pointer constant; or

— one operand is a pointer to an object or incomplete type and the other is a pointer to a
qualified or unqualified version @bid .

Semantics

The first operand is evaluated; there is a sequence point after its evaluation. The second
operand is evaluated only if the first compares unequal to O; the third operand is evaluated
only if the first compares equal to O; the result is the value of the second or third operand

(whichever is evaluated), converted to the type described §&dfvan attempt is made

to modify the result of a conditional operator or to access it after the next sequence point,

the behavior is undefined.

If both the second and third operands have arithmetic type, the type that the usual
arithmetic conversions would yield if applied to those two operands is the type of the
result. If both the operands have structure or union type, the result has that type. If both
operands have void type, the result has void type.

If both the second and third operands are pointers or one is a null pointer constant and the
other is a pointer, the result type is a pointer to a type qualified with all the type qualifiers
of the types pointed-to by both operands. Furthermore, if both operands are pointers to
compatible types or to differently qualified versions of compatible types, the result type is

81) A conditional expression does not yield an Ivalue.

6.5.14 Language 6.5.15

80 Committee Draft — August 3, 1998 WG14/N843

a pointer to an appropriately qualified version of the composite type; if one operand is a
null pointer constant, the result has the type of the other operand; otherwise, one operand
is a pointer tovoid or a qualified version ofoid , in which case the result type is a
pointer to an appropriately qualified versiorvofd .

EXAMPLE The common type that results when the second and third operands are pointers is determined
in two independent stages. The appropriate qualifiers, for example, do not depend on whether the two
pointers have compatible types.

Given the declarations

const void *c_vp;

void *vp;

const int *c_ip;

volatile int *v_ip;

int *ip;

const char *c_cp;
the third column in the following table is the common type that is the result of a conditional expression in
which the first two columns are the second and third operands (in either order):

cvp cp const void *

vip O volatile int *
cip v_ip const volatile int *
vp ccp const void *

ip c ip constint *

vp ip void *

6.5.16 Assignment operators
Syntax

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operatorone of
= *= = %= += -= <<= >>= &= "= |=
Constraints
An assignment operator shall have a modifiable Ivalue as its left operand.
Semantics

An assignment operator stores a value in the object designated by the left operand. An
assignment expression has the value of the left operand after the assignment, but is not an
Ivalue. The type of an assignment expression is the type of the left operand unless the
left operand has qualified type, in which case it is the unqualified version of the type of
the left operand. The side effect of updating the stored value of the left operand shall
occur between the previous and the next sequence point.

6.5.15 Language 6.5.16

WG14/N843 Committee Draft — August 3, 1998 81

The order of evaluation of the operands is unspecified. If an attempt is made to modify
the result of an assignment operator or to access it after the next sequence point, the
behavior is undefined.

6.5.16.1 Simple assignment
Constraints
One of the following shall hol¢f)

— the left operand has qualified or unqualified arithmetic type and the right has
arithmetic type;

— the left operand has a qualified or unqualified version of a structure or union type
compatible with the type of the right;

— both operands are pointers to qualified or unqualified versions of compatible types,
and the type pointed to by the left has all the qualifiers of the type pointed to by the
right;

— one operand is a pointer to an object or incomplete type and the other is a pointer to a
qualified or unqualified version ebid , and the type pointed to by the left has all
the qualifiers of the type pointed to by the right; or

— the left operand is a pointer and the right is a null pointer constant.
Semantics

In simple assignmer(t), the value of the right operand is converted to the type of the
assignment expression and replaces the value stored in the object designated by the left
operand.

If the value being stored in an object is accessed from another object that overlaps in any
way the storage of the first object, then the overlap shall be exact and the two objects
shall have qualified or unqualified versions of a compatible type; otherwise, the behavior

is undefined.

EXAMPLE 1 In the program fragment

int f(void);

char c;

Y

if ((c =1() == -1)
Y

theint value returned by the function may be truncated when stored amdne, and then converted back

toint width prior to the comparison. In an implementation in which “plaghhar has the same range of
values asunsigned char (andchar is narrower thannt), the result of the conversion cannot be
negative, so the operands of the comparison can never compare equal. Therefore, for full portability, the
variablec should be declared &g .

82) The asymmetric appearance of these constraints with respect to type qualifiers is due to the conversion
(specified in 6.3.2.1) that changes Ivalues to “the value of the expression” which removes any type
qualifiers from the type category of the expression.

6.5.16 Language 6.5.16.1

82 Committee Draft — August 3, 1998 WG14/N843

EXAMPLE 2 In the fragment:

char c;
inti;
long I;

the value of is converted to the type of the assignment-expressioni , that is,char type. The value
of the expression enclosed in parentheses is then converted to the type of the outer assignment-expression,
thatis,longint type.

EXAMPLE 3 Consider the fragment:

const char **cpp;
char *p;
const char c ='A’;

cpp = &p; /1 constraint violation
*Cpp = &¢; I valid
*p =0; I valid

The first assignment is unsafe because it would allow the following valid code to attempt to change the
value of the const object

6.5.16.2 Compound assignment
Constraints

For the operators= and-= only, either the left operand shall be a pointer to an object
type and the right shall have integer type, or the left operand shall have qualified or
unqualified arithmetic type and the right shall have arithmetic type.

For the other operators, each operand shall have arithmetic type consistent with those
allowed by the corresponding binary operator.

Semantics

A compound assignmemtf the formE1 op= E2 differs from the simple assignment
expressioreEl = E1 op(E2) only in that the Ivalu&l is evaluated only once.

6.5.17 Comma operator

Syntax
expression:
assignment-expression
expression assignment-expression
Semantics

The left operand of a comma operator is evaluated as a void expression; there is a
sequence point after its evaluation. Then the right operand is evaluated; the result has its
type and valué® If an attempt is made to modify the result of a comma operator or to

6.5.16.1 Language 6.5.17

WG14/N843 Committee Draft — August 3, 1998 83

access it after the next sequence point, the behavior is undefined.

EXAMPLE As indicated by the syntax, the comma operator (as described in this subclause) cannot
appear in contexts where a comma is used to separate items in a list (such as arguments to functions or lists
of initializers). On the other hand, it can be used within a parenthesized expression or within the second
expression of a conditional operator in such contexts. In the function call

f(a, (t=3, t+2),)

the function has three arguments, the second of which has the value 5.

Forward references: initialization (6.7.8).

83) A comma operator does not yield an Ivalue.

6.5.17 Language 6.5.17

84 Committee Draft — August 3, 1998 WG14/N843

6.6 Constant expressions
Syntax

constant-expression:
conditional-expression

Description

A constant expressiogan be evaluated during translation rather than runtime, and
accordingly may be used in any place that a constant may be.

Constraints

Constant expressions shall not contain assignment, increment, decrement, function-call,
or comma operators, except when they are contained within a subexpression that is not
evaluated?

Each constant expression shall evaluate to a constant that is in the range of representable
values for its type.

Semantics

An expression that evaluates to a constant is required in several contexts. If a floating
expression is evaluated in the translation environment, the arithmetic precision and range
shall be at least as great as if the expression were being evaluated in the execution
environment.

An integer constant expressi?ﬁ% shall have integer type and shall only have operands
that are integer constants, enumeration constants, character constaets,
expressions whose results are integer constants, and floating constants that are the
immediate operands of casts. Cast operators in an integer constant expression shall only
convert arithmetic types to integer types, except as part of an operandsiaetbie

operator.

More latitude is permitted for constant expressions in initializers. Such a constant
expression shall be, or evaluate to, one of the following:

— an arithmetic constant expression,

— a null pointer constant,

— an address constant, or

— an address constant for an object type plus or minus an integer constant expression.

84) The operand ofsizeof operator is usually not evaluated (6.5.3.4).

85) An integer constant expression is used to specify the size of a bit-field member of a structure, the
value of an enumeration constant, the size of an array, or the valueasieaconstant. Further
constraints that apply to the integer constant expressions used in conditional-inclusion preprocessing
directives are discussed in 6.10.1.

6.6 Language 6.6

10
11

WG14/N843 Committee Draft — August 3, 1998 85

An arithmetic constant expressioshall have arithmetic type and shall only have
operands that are integer constants, floating constants, enumeration constants, character
constants, andizeof expressions. Cast operators in an arithmetic constant expression
shall only convert arithmetic types to arithmetic types, except as part of an operand to the
sizeof operator.

An address constans a null pointer, a pointer to an Ivalue designating an object of static
storage duration, or to a function designator; it shall be created explicitly using the unary
& operator or an integer constant cast to pointer type, or implicitly by the use of an
expression of array or function type. The array-subsgripptnd member-accessand

-> operators, the addre&sand indirectior* unary operators, and pointer casts may be
used in the creation of an address constant, but the value of an object shall not be
accessed by use of these operators.

An implementation may accept other forms of constant expressions.

The semantic rules for the evaluation of a constant expression are the same as for
nonconstant expressioffs.

Forward references: array declarators (6.7.5.2), initialization (6.7.8).

86) Thus, in the following initialization,
staticinti=2||1/0;

the expression is a valid integer constant expression with value one.

6.6 Language 6.6

86 Committee Draft — August 3, 1998 WG14/N843

6.7 Declarations
Syntax

declaration:
declaration-specifiers init-declarator-ligﬁt;

declaration-specifiers:
storage-class-specifier declaration-specifjj%lis
type-specifier declaration-specifigq
type-qualifier declaration-specifieor(%
function-specifier declaration-spe |}i8[)§

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

Constraints

A declaration shall declare at least a declarator (other than the parameters of a function or
the members of a structure or union), a tag, or the members of an enumeration.

If an identifier has no linkage, there shall be no more than one declaration of the identifier
(in a declarator or type specifier) with the same scope and in the same name space, except
for tags as specified in 6.7.2.3.

All declarations in the same scope that refer to the same object or function shall specify
compatible types.

Semantics

A declaration specifies the interpretation and attributes of a set of identifiers. A
definitionof an identifier is a declaration for that identifier that:

— for an object, causes storage to be reserved for that object;
— for a function, includes the function bo8i{);

— for an enumeration constant or typedef name, is the (only) declaration of the
identifier.

The declaration specifiers consist of a sequence of specifiers that indicate the linkage,
storage duration, and part of the type of the entities that the declarators denote. The init-
declarator-list is a comma-separated sequence of declarators, each of which may have
additional type information, or an initializer, or both. The declarators contain the
identifiers (if any) being declared.

87) Function definitions have a different syntax, described in 6.9.1.

6.7 Language 6.7

WG14/N843 Committee Draft — August 3, 1998 87

If an identifier for an object is declared with no linkage, the type for the object shall be
complete by the end of its declarator, or by the end of its init-declarator if it has an
initializer.

Forward references: declarators (6.7.5), enumeration specifiers (6.7.2.2), initialization
(6.7.8), tags (6.7.2.3).

6.7.1 Storage-class specifiers
Syntax

storage-class-specifier:
typedef
extern
static
auto
register

Constraints

At most, one storage-class specifier may be given in the declaration specifiers in a
declaratior£®)

Semantics

Thetypedef specifier is called a “storage-class specifier” for syntactic convenience
only; it is discussed in 6.7.7. The meanings of the various linkages and storage durations
were discussed in 6.2.2 and 6.2.4.

A declaration of an identifier for an object with storage-class specéugster
suggests that access to the object be as fast as possible. The extent to which such
suggestions are effective is implementation-deffifed.

The declaration of an identifier for a function that has block scope shall have no explicit
storage-class specifier other treattern

If an aggregate or union object is declared with a storage-class specifier other than
typedef , the properties resulting from the storage-class specifier, except with respect to

linkage, also apply to the members of the object, and so on recursively for any aggregate
or union member objects.

88) See “future language directions” (6.11.2).

89) The implementation may treat amgister declaration simply as aauto declaration. However,
whether or not addressable storage is actually used, the address of any part of an object declared with
storage-class specifieegister cannot be computed, either explicitly (by use of the urgry
operator as discussed in 6.5.3.2) or implicitly (by converting an array name to a pointer as discussed in
6.3.2.1). Thus the only operator that can be applied to an array declared with storage-class specifier
register issizeof

6.7 Language 6.7.1

88 Committee Draft — August 3, 1998 WG14/N843

Forward references: type definitions (6.7.7).

6.7.2 Type specifiers
Syntax

type-specifier:
void
char
short
int
long
float
double
signed
unsigned
_Bool
_Complex
_Imaginary
struct-or-union-specifier
enum-specifier
typedef-name

Constraints

At least one type specifier shall be given in the declaration specifiers in each declaration,
and in the specifier-qualifier list in each struct declaration and type name. Each list of
type specifiers shall be one of the following sets (delimited by commas, when there is
more than one set on a line); the type specifiers may occur in any order, possibly
intermixed with the other declaration specifiers.

— void

— char

— signed char

— unsigned char

— short , signed short , short int , or signed short int
— unsigned short , orunsigned short int

— int , signed , orsigned int

— unsigned , orunsigned int

— long ,signedlong ,longint , orsigned long int

— unsigned long , orunsigned long int

— long long , signed long long , long long int , or signed long
long int

6.7.1 Language 6.7.2

WG14/N843 Committee Draft — August 3, 1998 89

— unsigned long long , orunsigned long long int
— float

— double

— long double

— _Bool

— float _Complex

— double _Complex

— long double _Complex
— float _Imaginary

— double _Imaginary

— long double _Imaginary
— struct or union specifier
— enum specifier

— typedef name

The type specifiers Complex and _Imaginary shall not be used if the
implementation does not provide those ty?ﬁ%s.

Semantics

Specifiers for structures, unions, and enumerations are discussed in 6.7.2.1 through
6.7.2.3. Declarations of typedef names are discussed in 6.7.7. The characteristics of the
other types are discussed in 6.2.5.

Each of the comma-separated sets designates the same type, except that for bit-fields, it is
implementation-defined whether the specifigr designates the same typesagned
int or the same type amsigned int

Forward references: enumeration specifiers (6.7.2.2), structure and union specifiers
(6.7.2.1), tags (6.7.2.3), type definitions (6.7.7).

6.7.2.1 Structure and union specifiers
Syntax

struct-or-union-specifier:
struct-or-union identifie(; pt{ struct-declaration-list}
struct-or-union identifier

90) Implementations are not required to provide imaginary types. Freestanding implementations are not
required to provide complex types.

6.7.2 Language 6.7.2.1

90 Committee Draft — August 3, 1998 WG14/N843

struct-or-union:
struct
union

struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

struct-declaration:
specifier-qualifier-list struct-declarator-list

specifier-qualifier-list:
type-specifier specifier-qualifier-list
type-qualifier specifier-qualifier-lig t

struct-declarator-list:
struct-declarator
struct-declarator-list, struct-declarator

struct-declarator:
declarator

declarato% constant-expression

pt -
Constraints

A structure or union shall not contain a member with incomplete or function type (hence,
a structure shall not contain an instance of itself, but may contain a pointer to an instance
of itself), except that the last member of a structure with more than one named member
may have incomplete array type; such a structure (and any union containing, possibly
recursively, a member that is such a structure) shall not be a member of a structure or an
element of an array.

The expression that specifies the width of a bit-field shall be an integer constant
expression that has nonnegative value that shall not exceed the number of bits in an object
of the type that is specified if the colon and expression are omitted. If the value is zero,
the declaration shall have no declarator.

Semantics

As discussed in 6.2.5, a structure is a type consisting of a sequence of members, whose
storage is allocated in an ordered sequence, and a union is a type consisting of a sequence
of members whose storage overlap.

Structure and union specifiers have the same form.

The presence of a struct-declaration-list in a struct-or-union-specifier declares a new type,
within a translation unit. The struct-declaration-list is a sequence of declarations for the
members of the structure or union. If the struct-declaration-list contains no named
members, the behavior is undefined. The type is incomplete until aftey that
terminates the list.

6.7.2.1 Language 6.7.2.1

10

11

12

13

WG14/N843 Committee Draft — August 3, 1998 91

A member of a structure or union may have any object type other than a variably
modified type’? In addition, a member may be declared to consist of a specified humber
of bits (including a sign bit, if any). Such a member is calldutdield;?? its width is
preceded by a colon.

A bit-field shall have a type that is a qualified or unqualified versioiBobl , signed

int , orunsigned int . A bit-field is interpreted as a signed or unsigned integer type
consisting of the specified number of Bits.If the value 0 or 1 is stored into a nonzero-
width bit-field of type_Bool , the value of the bit-field shall compare equal to the value
stored.

An implementation may allocate any addressable storage unit large enough to hold a bit-
field. If enough space remains, a bit-field that immediately follows another bit-field in a
structure shall be packed into adjacent bits of the same unit. If insufficient space remains,
whether a bit-field that does not fit is put into the next unit or overlaps adjacent units is
implementation-defined. The order of allocation of bit-fields within a unit (high-order to
low-order or low-order to high-order) is implementation-defined. The alignment of the
addressable storage unit is unspecified.

A bit-field declaration with no declarator, but only a colon and a width, indicates an
unnamed bit-field® As a special case, a bit-field structure member with a width of 0
indicates that no further bit-field is to be packed into the unit in which the previous bit-
field, if any, was placed.

Each non-bit-field member of a structure or union object is aligned in an implementation-
defined manner appropriate to its type.

Within a structure object, the non-bit-field members and the units in which bit-fields
reside have addresses that increase in the order in which they are declared. A pointer to a
structure object, suitably converted, points to its initial member (or if that member is a
bit-field, then to the unit in which it resides), and vice versa. There may be unnamed
padding within a structure object, but not at its beginning.

The size of a union is sufficient to contain the largest of its members. The value of at
most one of the members can be stored in a union object at any time. A pointer to a
union object, suitably converted, points to each of its members (or if a member is a bit-
field, then to the unit in which it resides), and vice versa.

91) A structure or union can not contain a member with a variably modified type because member names
are not ordinary identifiers as defined in 6.2.3.

92) The unan& (address-of) operator cannot be applied to a bit-field object; thus, there are no pointers to
or arrays of bit-field objects.

93) As specified in 6.7.2 above, if the actual type specifier uset ior a typedef-name definedias |,
then it is implementation-defined whether the bit-field is signed or unsigned.

94) An unnamed bit-field structure member is useful for padding to conform to externally imposed
layouts.

6.7.2.1 Language 6.7.2.1

14
15

16

17

18

92 Committee Draft — August 3, 1998 WG14/N843

There may be unnamed padding at the end of a structure or union.

As a special case, the last element of a structure with more than one named member may
have an incomplete array type. This is calldtexible array memberand the size of the
structure shall be equal to the offset of the last element of an otherwise identical structure
that replaces the flexible array member with an array of unspecified f8hgtthen an

Ivalue whose type is a structure with a flexible array member is used to access an object,
it behaves as if that member were replaced with the longest array, with the same element
type, that would not make the structure larger than the object being accessed; the offset of
the array shall remain that of the flexible array member, even if this would differ from
that of the replacement array. If this array would have no elements, then it behaves as if it
had one element, but the behavior is undefined if any attempt is made to access that
element or to generate a pointer one past it.

EXAMPLE Assuming that all array members are aligned the same, after the declarations:

struct s { int n; double d[]; };
struct ss { int n; double d[1]; };

the three expressions:

sizeof (struct s)
offsetof(struct s, d)
offsetof(struct ss, d)

have the same value. The structsireict s has a flexible array member
If sizeof (double) is 8, then after the following code is executed:

struct s *s1;
struct s *s2;
s1 = malloc(sizeof (struct s) + 64);
s2 = malloc(sizeof (struct s) + 46);

and assuming that the calls nmalloc succeed, the objects pointed to ¢y ands2 behave as if the
identifiers had been declared as:

struct { int n; double d[8]; } *s1;
struct { int n; double d[5]; } *s2;

Following the further successful assignments:

s1 = malloc(sizeof (struct s) + 10);
s2 = malloc(sizeof (struct s) + 6);

they then behave as if the declarations were:
struct { int n; double d[1]; } *s1, *s2;

and:

95) The length is unspecified to allow for the fact that implementations may give array members different
alignments according to their lengths.

6.7.2.1 Language 6.7.2.1

WG14/N843 Committee Draft — August 3, 1998 93

double *dp;

dp = &(s1->d[0]); I Permitted

*dp = 42; I Permitted

dp = &(s2->d[0]); I Permitted

*dp = 42; I Undefined behavior

Forward references: tags (6.7.2.3).
6.7.2.2 Enumeration specifiers
Syntax

enum-specifier:
enum identifier, . { enumerator-list}
enum identifier_ . { enumerator-list, }
enum identifier

enumerator-list;
enumerator
enumerator-list, enumerator

enumerator:
enumeration-constant
enumeration-constant constant-expression

Constraints

The expression that defines the value of an enumeration constant shall be an integer
constant expression that has a value representabldrds an

Semantics

The identifiers in an enumerator list are declared as constants that hawat typed

may appear wherever such are permi#8d.An enumerator with= defines its
enumeration constant as the value of the constant expression. If the first enumerator has
no =, the value of its enumeration constant is 0. Each subsequent enumerator with no
defines its enumeration constant as the value of the constant expression obtained by
adding 1 to the value of the previous enumeration constant. (The use of enumerators with
= may produce enumeration constants with values that duplicate other values in the same
enumeration.) The enumerators of an enumeration are also known as its members.

Each enumerated type shall be compatible with an integer type. The choice of type is
implementation-definet) but shall be capable of representing the values of all the
members of the enumeration. The enumerated type is incomplete until affetitae
terminates the list of enumerator declarations.

96) Thus, the identifiers of enumeration constants declared in the same scope shall all be distinct from
each other and from other identifiers declared in ordinary declarators.

97) An implementation may delay the choice of which integer type until all enumeration constants have
been seen.

6.7.2.1 Language 6.7.2.2

94 Committee Draft — August 3, 1998 WG14/N843

EXAMPLE The following fragment:

enum hue { chartreuse, burgundy, claret=20, winedark };

enum hue col, *cp;

col = claret;

cp = &caol;

if (*cp != burgundy)

L |

makeshue the tag of an enumeration, and then declacds as an object that has that type @pdas a
pointer to an object that has that type. The enumerated values are in the set {0, 1, 20, 21}.

Forward references: tags (6.7.2.3).
6.7.2.3 Tags
Constraints
A specific type shall have its content defined at most once.
A type specifier of the form
enum identifier
without an enumerator list shall only appear after the type it specifies is completed.
Semantics

All declarations of structure, union, or enumerated types that have the same scope and
use the same tag declare the same type. The type is incoffiplets! the closing brace
of the list defining the content, and complete thereafter.

Two declarations of structure, union, or enumerated types which are in different scopes or
use different tags declare distinct types. Each declaration of a structure, union, or
enumerated type which does not include a tag declares a distinct type.

A type specifier of the form

struct-or-union identifiecg ot { struct-declaration-list}
or

enum identifier { enumerator-list}
or

enum identifier { enumerator-list, }

declares a structure, union, or enumerated type. The list definegubtire content
union contentor enumeration contentf an identifier is provided? the type specifier
also declares the identifier to be the tag of that type.

98) An incomplete type may only by used when the size of an object of that type is not needed. It is not
needed, for example, when a typedef name is declared to be a specifier for a structure or union, or
when a pointer to or a function returning a structure or union is being declared. (See incomplete types
in 6.2.5.) The specification has to be complete before such a function is called or defined.

6.7.2.2 Language 6.7.2.3

WG14/N843 Committee Draft — August 3, 1998 95

6 Adeclaration of the form
struct-or-union identifier;
specifies a structure or union type and declares the identifier as a tag of th3Ptype.
7 If atype specifier of the form
struct-or-union identifier

occurs other than as part of one of thewadorms, and no other declaration of the
identifier as a tag is visible, then it declares an incomplete structure or union type, and
declares the identifier as the tag of that %

8 If atype specifier of the form

struct-or-union identifier
or
enum identifier

occurs other than as part of one of thevadorms, and a declaration of the identifier as a
tag is visible, then it specifies the same type as that other declaration, and does not
redeclare the tag.

9 EXAMPLE 1 This mechanism allows declaration of a self-referential structure.

struct tnode {
int count;
struct tnode *left, *right;
I3
specifies a structure that contains an integer and two pointers to objects of the same type. Once this
declaration has been given, the declaration

struct tnode s, *sp;

declaress to be an object of the given type aspl to be a pointer to an object of the given type. With
these declarations, the expresssm>left refers to the lefstructtnode pointer of the object to
which sp points; the expressiagiright->count designates theount member of the righstruct

tnode pointed to frons.

10 The following alternative formulation uses tgpedef mechanism:

typedef struct tnode TNODE;
struct tnode {

int count;

TNODE *left, *right;
h
TNODE s, *sp;

99) If there is no identifier, the type can, within the translation unit, only be referred to by the declaration
of which it is a part. Of course, when the declaration is of a typedef name, subsequent declarations
can make use of that typedef name to declare objects having the specified structure, union, or
enumerated type.

100) A similar construction witenum does not exist.

6.7.2.3 Language 6.7.2.3

11

96 Committee Draft — August 3, 1998 WG14/N843

EXAMPLE 2 To illustrate the use of prior declaration of a tag to specify a pair of mutually referential
structures, the declarations

struct sl { struct s2 *s2p; /* .. *1'}; /D1
struct s2 { struct s1 *slp; /* o *1}; 11 D2

specify a pair of structures that contain pointers to each other. Note, however, shatvéfre already
declared as a tag in an enclosing scope, the declatiovould refer toit, not to the tag2 declared in
D2. To eliminate this context sensitivity, the declaration

struct s2;

may be inserted ahead Bfl. This declares a new teg in the inner scope; the declarati@® then
completes the specification of the new type.

Forward references: declarators (6.7.5), array declarators (6.7.5.2), type definitions
(6.7.7).

6.7.3 Type qualifiers

Syntax
type-qualifier:
const
restrict
volatile

Constraints

Types other than pointer types derived from object or incomplete types shall not be
restrict-qualified.

Semantics

The properties associated with qualified types are meaningful only for expressions that
are Ivalues%%

If the same qualifier appears more than once in the spewfier-qualifier-list either
directly or via one or morgypedef s, the behavior is the same as if it appeared only
once.

If an attempt is made to modify an object defined with a const-qualified type through use
of an Ivalue with non-const-qualified type, the behavior is undefined. If an attempt is
made to refer to an object defined with a volatile-qualified type through use of an Ivalue
with non-volatile-qualified type, the behavior is undefit&d.

101) The implementation may placecanst object that is nowolatile in a read-only region of
storage. Moreover, the implementation need not allocate storage for such an object if its address is
never used.

102) This applies to those objects that behave as if they were defined with qualified types, even if they are
never actually defined as objects in the program (such as an object at a memory-mapped input/output
address).

6.7.2.3 Language 6.7.3

WG14/N843 Committee Draft — August 3, 1998 97

An object that has volatile-qualified type may be modified in ways unknown to the
implementation or have other unknown side effects. Therefore any expression referring
to such an object shall be evaluated strictly according to the rules of the abstract machine,
as described in 5.1.2.3. Furthermore, at every sequence point the value last stored in the
object shall agree with that prescribed by the abstract machine, except as modified by the
unknown factors mentioned previoud?? What constitutes an access to an object that
has volatile-qualified type is implementation-defined.

An object that is accessed through a restrict-qualified pointer has a special association
with that pointer. This association, defined in 6.7.3.1 below, requires that all accesses to
that object use, directly or indirectly, the value of that particular poifftehe intended

use of therestrict qualifier (like the register storage class) is to promote
optimization, and deleting all instances of the qualifier from a conforming program does
not change its meaning (i.e., observable behavior).

If the specification of an array type includes any type qualifiers, the element type is so-
gualified, not the array type. If the specification of a function type includes any type
qualifiers, the behavior is undefinE)

For two qualified types to be compatible, both shall have the identically qualified version
of a compatible type; the order of type qualifiers within a list of specifiers or qualifiers
does not affect the specified type.

EXAMPLE 1 An object declared
extern const volatile int real_time_clock;

may be modifiable by hardware, but cannot be assigned to, incremented, or decremented.

EXAMPLE 2 The following declarations and expressions illustrate the behavior when type qualifiers
modify an aggregate type:

conststructs {intmem; }cs={1}

struct s ncs; /I the objecics is modifiable

typedef int A[2][3];

constAa={{4,5,6}{7,8,9}/ array of array of
/l const int

int *pi;

const int *pci;

103) A volatile declaration may be used to describe an object corresponding to a memory-mapped
input/output port or an object accessed by an asynchronously interrupting function. Actions on
objects so declared shall not be “optimized out” by an implementation or reordered except as
permitted by the rules for evaluating expressions.

104) For example, a statement that assigns a value returnedllog to a single pointer establishes this
association between the allocated object and the pointer.

105) Both of these can occur through the usypddef s.

6.7.3 Language 6.7.3

98 Committee Draft — August 3, 1998 WG14/N843

ncs = cs; i valid

CS = NCS; i violates modifiable Ivalue constraint for
pi = &ncs.mem; // valid

pi = &cs.mem; // violates type constraints for

pci = &cs.mem; // valid

pi = a[0]; I invalid: a[0] has type tonstint *

6.7.3.1 Formal definition ofrestrict

Let D be a declaration of an ordinary identifier that provides a means of designating an
objectP as a restrict-qualified pointer.

If D appears inside a block and does not have storageenttss |, let B denote the
block. If D appears in the list of parameter declarations of a function definitioB, let
denote the associated block. OtherwiseBleenote the block ahain (or the block of
whatever function is called at program startup in a freestanding environment).

In what follows, a pointer expressidhis said to bebasedon objectP if (at some
seguence point in the executionBprior to the evaluation dE) modifying P to point to
a copy of the array object into which it formerly pointed would change the valé%6f

Note that “based” is defined only for expressions with pointer types.

During each execution d&, let A be the array object that is determined dynamically by
all accesses through pointer expressions bas&d Dmenall accesses to values Afhall

be through pointer expressions basedPofrurthermore, ifP is assigned the value of a
pointer expressiok that is based on another restricted pointer olij@ctissociated with
block B2, then either the execution &2 shall begin before the execution Bf or the
execution oB2 shall end prior to the assignment. If these requirements are not met, then
the behavior is undefined.

Here an execution @& means that portion of the execution of the program during which
storage is guaranteed to be reserved for an instance of an object that is associ&ed with
and that has automatic storage duration. An access to a value means either fetching it or
modifying it; expressions that are not evaluated do not access values.

A translator is free to ignore any or all aliasing implications of usesstrfict
EXAMPLE 1 The file scope declarations

int * restrict a;
int * restrict b;
extern int c[];

assert that if an object is accessed using the value of anebobr ¢, then it is never accessed using the
value of either of the other two.

106) In other wordsE depends on the value Bfitself rather than on the value of an object referenced
indirectly throughP. For example, if identifiep has type(int **restrict) , then the pointer
expressiong and p+1 are based on the restricted pointer object designateul byt the pointer
expressiongp andp[l] are not.

6.7.3 Language 6.7.3.1

10

11

WG14/N843 Committee Draft — August 3, 1998 99

EXAMPLE 2 The function parameter declarations in the following example

void f(int n, int * restrict p, int * restrict q)
{
while (n-- > 0)
*p++ = *q++,

}

assert that, during each execution of the function, if an object is accessed through one of the pointer
parameters, then it is not also accessed through the other.

The benefit of theestrict qualifiers is that they enable a translator to make an effective dependence
analysis of functiorf without examining any of the calls df in the program. The cost is that the
programmer has to examine all of those calls to ensure that none give undefined behavior. For example, the
second call of in g has undefined behavior because eacti[bf throughd[49] is accessed through

bothp andqg.

void g(void)
{
extern int d[100];
(50, d + 50, d); // ok
f(50,d+ 1,d);// undefined behavior

EXAMPLE 3 The function parameter declarations

void h(int n, int * const restrict p,
int * const q, int * const)

{ . .
inti;
for i=0;i<n;i++)
p[i] = qli] + rfi];
}
show howconst can be used in conjunction witbstrict . Theconst qualifiers imply, without the

need to examine the body lof thatq andr cannot become based pnThe fact thap is restrict-qualified
therefore implies that an object accessed thrqughnever accessed through eithemqodr r . This is the
precise assertion required to optimize the loop. Note that a call of theh{dafn, a, b, b) has
defined behavior, which would not be true if all thre@ of, andr were restrict-qualified.

EXAMPLE 4 The rule limiting assignments between restricted pointers does not distinguish between a
function call and an equivalent nested block. With one exception, only “outer-to-inner” assignments
between restricted pointers declared in nested blocks have defined behavior.

6.7.3.1 Language 6.7.3.1

100 Committee Draft — August 3, 1998 WG14/N843

{
int * restrict p1;
int * restrict q1;
pl=ql;// undefined behavior
{
int * restrict p2 = p1; // ok
int * restrict g2 = q1; // ok
pl=q2;// undefined behavior
p2 =q2;// undefined behavior
}
}

The exception allows the value of a restricted pointer to be carried out of the block in which it (or, more
precisely, the ordinary identifier used to designate it) is declared when that block finishes execution. For
example, this permitsew_vector to return avector

typedef struct { int n; float * restrict v; } vector;
vector new_vector(int n)

{
vector t;
tn=n;
t.v = malloc(n * sizeof (float));
return t;
}

6.7.4 Function specifiers
Syntax
function-specifier:
inline
Constraints
Function specifiers shall be used only in the declaration of an identifier for a function.

An inline definition of a function with external linkage shall not contain a definition of a
modifiable object with static storage duration, and shall not contain a reference to an
identifier with internal linkage.

Theinline function specifier shall not appear in a declaratiomain .
Semantics

A function declared with amline function specifier is amnline function (The
function specifier may appear more than once; the behavior is the same as if it appeared
only once.) Making a function an inline function suggests that calls to the function be as
fast as possibl®”) The extent to which such suggestions are effective is
implementation-definetf®)

Any function with internal linkage can be an inline function. For a function with external
linkage, the following restrictions apply: If a function is declared withirdime
function specifier, then it shall also be defined in the same translation unit. If all of the

6.7.3.1 Language 6.7.4

8

WG14/N843 Committee Draft — August 3, 1998 101

file scope declarations for a function in a translation unit includéntime function
specifier withoutextern , then the definition in that translation unit is aiine
definition An inline definition does not provide an external definition for the function,
and does not forbid an external definition in another translation unit. An inline definition
provides an alternative to an external definition, which a translator may use to implement
any call to the function in the same translation unit. It is unspecified whether a call to the
function uses the inline definition or the external definitfh.

EXAMPLE The declaration of an inline function with external linkage can result in either an external
definition, or a definition available for use only within the translation unit. A file scope declaration with
extern creates an external definition. The following example shows an entire translation unit.

inline double fahr(double t)

{
return (9.0 *t) / 5.0 + 32.0;
}
inline double cels(double t)
{
return (5.0 * (t - 32.0)) / 9.0;
}
extern double fahr(double); // creates an external definition

double convert(int is_fahr, double temp)

{
/¥ Atranslator may perform inline substitution¥!
return is_fahr ? cels(temp) : fahr(temp);

}

Note that the definition dahr is an external definition becaufsdnr is also declared withxtern , but

the definition ofcels is an inline definition. Becauseels has external linkage and is referenced, an
external definition has to appear in another translation unit (see 6.9); the inline definition and the external
definition are distinct and either may be used for the call.

107) By using, for example, an alternative to the usual function call mechanism, such as “inline
substitution”.

Inline substitution is not textual substitution, nor does it create a new function. Therefore, for
example, the expansion of a macro used within the body of the function uses the definition it had at
the point the function body appears, and not where the function is called; and identifiers refer to the
declarations in scope where the body occurs. Similarly, the address of the function is not affected by
the function’s being inlined.

108) For example, an implementation might never perform inline substitution, or might only perform inline
substitutions to calls in the scope ofialine declaration.

109) Since an inline definition is distinct from the corresponding external definition, and from any other
corresponding inline definition in another translation unit, all corresponding objects with static storage
duration are also distinct in each of the definitions.

6.7.4 Language 6.7.4

102 Committee Draft — August 3, 1998 WG14/N843

6.7.5 Declarators
Syntax

declarator:
pointerO ot direct-declarator

direct-declarator:
identifier
(declarator)
direct-declarator [assignment-expressig&]
direct-declarator [*]
direct-declarator (parameter-type-list)
direct-declarator (identifier-listOlot)

pointer:
* type-qualifier-lis ot
* type-qualifier-lisgpt pointer

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

parameter-type-list:
parameter-list
parameter-list, ...

parameter-list:
parameter-declaration
parameter-list, parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declarag%li

identifier-list:
identifier
identifier-list , identifier
Semantics

Each declarator declares one identifier, and asserts that when an operand of the same
form as the declarator appears in an expression, it designates a function or object with the
scope, storage duration, and type indicated by the declaration specifiers.

A full declarator is a declarator that is not part of another declarator. The end of a full
declarator is a sequence point. If the nested sequence of declarators in a full declarator
contains a variable length array type, the type specified by the full declarator is said to be
variably modified

6.7.5 Language 6.7.5

WG14/N843 Committee Draft — August 3, 1998 103

In the following subclauses, consider a declaration
T D1

whereT contains the declaration specifiers that specify a Tyfseich asnt) andD1 is
a declarator that contains an identifident. The type specified for the identifiglentin
the various forms of declarator is described inductively using this notation.

If, in the declaration T D1”, D1 has the form
identifier

then the type specified fatentis T.

If, in the declaration T D17, D1 has the form
(D)

then ident has the type specified by the declaratioh D’. Thus, a declarator in
parentheses is identical to the unparenthesized declarator, but the binding of complicated
declarators may be altered by parentheses.

Implementation limits

As discussed in 5.2.4.1, an implementation may limit the number of pointer, array, and
function declarators that modify an arithmetic, structure, union, or incomplete type, either
directly or via one or morg/pedef s.

Forward references: array declarators (6.7.5.2), type definitions (6.7.7).
6.7.5.1 Pointer declarators
Semantics
If, in the declaration T D1”, D1 has the form
* type-qualifier-lisgpt D

and the type specified fadentin the declaration T D" is “ derived-declarator-type-list
T7, then the type specified foident is “derived-declarator-type-list type-qualifier-list
pointer toT”. For each type qualifier in the listjentis a so-qualified pointer.

For two pointer types to be compatible, both shall be identically qualified and both shall
be pointers to compatible types.

EXAMPLE The following pair of declarations demonstrates the difference between a “variable pointer
to a constant value” and a “constant pointer to a variable value”.

const int *ptr_to_constant;
int *const constant_ptr;

The contents of any object pointed tofiity to_constant shall not be modified through that pointer,
but ptr_to_constant itself may be changed to point to another object. Similarly, the contents of the
int pointed to byconstant_ptr may be modified, butonstant_ptr itself shall always point to the
same location.

6.7.5 Language 6.7.5.1

104 Committee Draft — August 3, 1998 WG14/N843

The declaration of the constant poirtenstant_ptr may be clarified by including a definition for the
type “pointer toint "

typedef int *int_ptr;
const int_ptr constant_ptr;

declaresonstant_ptr as an object that has type “const-qualified pointénto”.

6.7.5.2 Array declarators
Constraints

The[and] may delimit an expression 6r. If [and] delimit an expression (which
specifies the size of an array), it shall have an integer type. If the expression is a constant
expression then it shall have a value greater than zero. The element type shall not be an
incomplete or function type.

Only ordinary identifiers (as defined in 6.2.3) with both block scope or function prototype
scope and no linkage shall have a variably modified type. If an identifier is declared to be
an object with static storage duration, it shall not have a variable length array type.

Semantics
If, in the declaration T D1”, D1 has the form

D[assignment-expressig&]
or

D[]
and the type specified fadentin the declaration T D’ is “ derived-declarator-type-list
T”, then the type specified fddentis “ derived-declarator-type-lisarray of T”. 119 |f
the size is not present, the array type is an incomplete typeis lfised instead of a size
expression, the array type is a variable length array type of unspecified size, which can
only be used in declarations with function prototype sc¢dpelf the size expression is
an integer constant expression and the element type has a known constant size, the array
type is not a variable length array type; otherwise, the array type is a variable length array
type. If the size expression is not a constant expression, and it is evaluated at program
execution time, it shall evaluate to a value greater than zero. It is unspecified whether

side effects are produced when the size expression is evaluated. The size of each instance
of a variable length array type does not change during its lifetime.

For two array types to be compatible, both shall have compatible element types, and if
both size specifiers are present, and are integer constant expressions, then both size
specifiers shall have the same constant value. If the two array types are used in a context
which requires them to be compatible, it is undefined behavior if the two size specifiers
evaluate to unequal values.

110) When several “array of” specifications are adjacent, a multidimensional array is declared.

111) Thus;* can be used only in function declarations that are not definitions (see 6.7.5.3).

6.7.5.1 Language 6.7.5.2

WG14/N843 Committee Draft — August 3, 1998 105

EXAMPLE 1
float fa[11], *afp[17];

declares an array fibat numbers and an array of pointerdlamt numbers.

EXAMPLE 2 Note the distinction between the declarations

extern int *x;
extern int y[];

The first declares to be a pointer tint ; the second declargsto be an array aht of unspecified size
(an incomplete type), the storage for which is defined elsewhere.

EXAMPLE 3 The following declarations demonstrate the compatibility rules for variably modified types.

extern int n;

extern int m;

void fcompat(void)

{
int a[n][6][m];
int (*p)[4][n+1];
int c[n][n][6][m];
int (*r)[n][n][n+1];

p = a; // Error - not compatible becauge != 6 .
r=c; /I Compatible, but defined behavior
/[onlyifn == 6 andm == n+1

EXAMPLE 4 All declarations of variably modified (VM) types have to be at either block scope or
function prototype scope. Array objects declared with dtatic or extern storage class specifier
cannot have a variable length array (VLA) type. However, an object declared wistatlte storage

class specifier can have a VM type (that is, a pointer to a VLA type). Finally, all identifiers declared with a
VM type have to be ordinary identifiers and cannot, therefore, be members of structures or unions.

6.7.5.2 Language 6.7.5.2

106 Committee Draft — August 3, 1998 WG14/N843

extern int n;
int A[n]; 1 Error - file scope VLA.
extern int (*p2)[n]; I Error - file scope VM.
int B[100]; I OK - file scope but not VM.
void fvla(int m, int C[m][m]) // OK - VLA with prototype scope.
{
typedef int VLA[mM][m] // OK - block scope typedef VLA.
struct tag {
int (*y)[n]; I Error - y not ordinary identifier.
int z[n]; 1 Error - z not ordinary identifier.
I3
int D[m]; 1l OK - auto VLA.
static int E[m]; I Error - static block scope VLA.
extern int F[m]; 1 Error - F has linkage and is VLA.
int (*s)[m]; I OK - auto pointer to VLA.
extern int (*r)[m]; 1 Error - r had linkage and is
/[apointer to VLA.
static int (*q)[m] = &B; // OK -q is a static block

/I pointer to VLA.

Forward references: function declarators (6.7.5.3), function definitions (6.9.1),
initialization (6.7.8).

6.7.5.3 Function declarators (including prototypes)
Constraints

A function declarator shall not specify a return type that is a function type or an array
type.
The only storage-class specifier that shall occur in a parameter declareggister

An identifier list in a function declarator that is not part of a definition of that function
shall be empty.

After adjustment, the parameters in a parameter type list in a function declarator that is
part of a definition of that function shall not have incomplete type.

Semantics
If, in the declaration T D1”, D1 has the form

D(parameter-type-ligt
or
D(|dent|f|er-I|stOpt)

and the type specified fadentin the declaration T D’ is “ derived-declarator-type-list
T”, then the type specified fadentis “derived-declarator-type-listunction returning

112) Arrays and functions are rewritten as pointers.

6.7.5.2 Language 6.7.5.3

10

11

WG14/N843 Committee Draft — August 3, 1998 107

T

A parameter type list specifies the types of, and may declare identifiers for, the
parameters of the function. A declaration of a parameter as “arraypef shall be
adjusted to “pointer tayp€’, and a declaration of a parameter as “function returning
typ€e’ shall be adjusted to “pointer to function returnitgp€’, as in 6.3.2.1. If the list
terminates with an ellipsis (..), no information about the number or types of the
parameters after the comma is suppli€dl. The special case of an unnamed parameter of
typevoid as the only item in the list specifies that the function has no parameters.

If, in a parameter declaration, an identifier can be treated as a typedef name or as a
parameter name, it shall be taken as a typedef name.

If the function declarator is not part of a definition of that function, parameters may have
incomplete type and may use ffig notation in their sequences of declarator specifiers
to specify variable length array types.

The storage-class specifier in the declaration specifiers for a parameter declaration, if
present, is ignored unless the declared parameter is one of the members of the parameter
type list for a function definition.

An identifier list declares only the identifiers of the parameters of the function. An empty

list in a function declarator that is part of a definition of that function specifies that the

function has no parameters. The empty list in a function declarator that is not part of a
definition of that function specifies that no information about the number or types of the
parameters is suppliéd®

For two function types to be compatible, both shall specify compatible returnttppes.
Moreover, the parameter type lists, if both are present, shall agree in the number of
parameters and in use of the ellipsis terminator; corresponding parameters shall have
compatible types. If one type has a parameter type list and the other type is specified by a
function declarator that is not part of a function definition and that contains an empty
identifier list, the parameter list shall not have an ellipsis terminator and the type of each
parameter shall be compatible with the type that results from the application of the
default argument promotions. If one type has a parameter type list and the other type is
specified by a function definition that contains a (possibly empty) identifier list, both shall
agree in the number of parameters, and the type of each prototype parameter shall be
compatible with the type that results from the application of the default argument
promotions to the type of the corresponding identifier. (In the determination of type
compatibility and of a composite type, each parameter declared with function or array
type is taken as having the adjusted type and each parameter declared with qualified type
is taken as having the unqualified version of its declared type.)

113) The macros defined in thestdarg.h> header (7.15) may be used to access arguments that
correspond to the ellipsis.

114) See “future language directions” (6.11.3).

115) If both function types are “old style”, parameter types are not compared.

6.7.5.3 Language 6.7.5.3

12

13

14

15

16

108 Committee Draft — August 3, 1998 WG14/N843

EXAMPLE 1 The declaration

int f(void), *fip(), (*pfi)();

declares a functiofi with no parameters returning amn , a functionfip with no parameter specification
returning a pointer to aint , and a pointepfi to a function with no parameter specification returning an

int . It is especially useful to compare the last two. The bindingfipf) is *(fip()) , SO that the
declaration suggests, and the same construction in an expression requires, the calling of &ifunction

and then using indirection through the pointer result to yieléthean In the declarato(*pfi)() , the

extra parentheses are necessary to indicate that indirection through a pointer to a function yields a function
designator, which is then used to call the function; it returnstan

If the declaration occurs outside of any function, the identifiers have file scope and external linkage. If the
declaration occurs inside a function, the identifiers of the functiarsdfip have block scope and either
internal or external linkage (depending on what file scope declarations for these identifiers are visible), and
the identifier of the pointgyfi has block scope and no linkage.

EXAMPLE 2 The declaration
int (*apfi[3])(int *x, int *y);

declares an arragpfi of three pointers to functions returnimgt . Each of these functions has two
parameters that are pointersinid . The identifiersx andy are declared for descriptive purposes only and
go out of scope at the end of the declaratioapdif .

EXAMPLE 3 The declaration
int (*fpfi(int (*)(long), int))(int, ...);

declares a functiofpfi that returns a pointer to a function returningratn . The functionfpfi has two
parameters: a pointer to a function returningrén (with one parameter of tydeng int), and arint .
The pointer returned bipfi points to a function that has oim¢ parameter and accepts zero or more
additional arguments of any type.

EXAMPLE 4 The following prototype has a variably modified parameter.

6.7.5.3 Language 6.7.5.3

WG14/N843 Committee Draft — August 3, 1998 109

void addscalar(int n, int m,
double a[n][n*m+300], double x);

int main()

{
double b[4][308];
addscalar(4, 2, b, 2.17);
return O;

}

void addscalar(int n, int m,
double a[n][n*m+300], double x)

{
for (inti=0;i<n;i++)
for (intj =0, k =n*m+300; j < k; j++)
/l'a is apointerto a VLA
/[withn*m+300 elements
afilii] +=x;
}

17 EXAMPLE 5 The following are all compatible function prototype declarators.

double maximum(int n, int m, double a[n][m]);
double maximum(int n, int m, double a[*][*]);
double maximum(int n, int m, double a[][*]);
double maximum(int n, int m, double a[][m]);

Forward references: function definitions (6.9.1), type names (6.7.6).

6.7.6 Type names
Syntax

1 type-name:
specifier-qualifier-list abstract-declarat>

abstract-declarator:
pointer
pointerO ot direct-abstract-declarator

direct-abstract-declarator:
(abstract-declarator)
direct-abstract-declarator ., [assignment-expressig&]
. Olpt *
dwect-abstract-declarat% t[]
direct-abstract-declarat%lﬁt (parameter-type-li%t|Ot)

Semantics

2 In several contexts, it is necessary to specify a type. This is accomplished tgieg a
name which is syntactically a declaration for a function or an object of that type that
omits the identifiet1®)

6.7.5.3 Language 6.7.6

110 Committee Draft — August 3, 1998 WG14/N843

EXAMPLE The constructions

@) int
(b) int *
(c) int *[3]

(d) int ()[3]

(e) int (*)[*]

® int *()

(9) int (*)(void)

(h) int (*const [])(unsigned int, ...)

name respectively the types {a) , (b) pointer tant , (c) array of three pointers ot , (d) pointer to an

array of threent s, (e) pointer to a variable length array of an unspecified number o, (f) function

with no parameter specification returning a pointeinto, (g) pointer to function with no parameters
returning annt , and (h) array of an unspecified number of constant pointers to functions, each with one
parameter that has typeisigned int and an unspecified number of other parameters, returning an
int .

6.7.7 Type definitions
Syntax

typedef-name:
identifier

Constraints
If a typedef name specifies a variably modified type then it shall have block scope.
Semantics

In a declaration whose storage-class specifigypedef , each declarator defines an
identifier to be a typedef name that denotes the type specified for the identifier in the way
described in 6.7.5. Any array size expressions associated with variable length array
declarators are evaluated each time the declaration of the typedef name is reached in the
order of execution. Aypedef declaration does not introduce a new type, only a
synonym for the type so specified. That is, in the following declarations:

typedef T type_ident;
type_ident D;

type_ident is defined as a typedef name with the type specified by the declaration
specifiers inT (known asT), and the identifier ilD has the type {erived-declarator-
type-list T" where thederived-declarator-type-liss specified by the declarators@fA

typedef name shares the same name space as other identifiers declared in ordinary
declarators.

EXAMPLE 1 After

116) As indicated by the syntax, empty parentheses in a type name are interpreted as “function with no
parameter specification”, rather than redundant parentheses around the omitted identifier.

6.7.6 Language 6.7.7

WG14/N843 Committee Draft — August 3, 1998 111

typedef int MILES, KLICKSP();
typedef struct { double hi, lo; } range;

the constructions

MILES distance;

extern KLICKSP *metricp;
range X;

range z, *zp;

are all valid declarations. The typeditance isint , that ofmetricp is “pointer to function with no
parameter specification returniimg ", and that ofx andz is the specified structurep is a pointer to
such a structure. The objatistance has a type compatible with any otlietr object.

EXAMPLE 2 After the declarations

typedef struct s1 {int x; } t1, *tp1;
typedef struct s2 {int x; } t2, *tp2;

typetl and the type pointed to hpl are compatible. Typé€l is also compatible with typstruct
s1, but not compatible with the typsfruct s2 , t2 , the type pointed to bip2 , orint .

EXAMPLE 3 The following obscure constructions

typedef signed int t;
typedef int plain;
struct tag {

unsigned t:4;
const t:5;
plain r:5;
%
declare a typedef nantewith typesigned int , a typedef namelain with typeint , and a structure

with three bit-field members, one namedhat contains values in the range [0, 15], an unnamed const-
qualified bit-field which (if it could be accessed) would contain values in at least the range [-15, +15], and
one named that contains values in the range [0, 31] or values in at least the range [-15, +15]. (The choice
of range is implementation-defined.) The first two bit-field declarations differ iruttsigned is a type
specifier (which forces to be the name of a structure member), wbdest is a type qualifier (which
modifiest which is still visible as a typedef name). If these declarations are followed in an inner scope by

tf(t (1)
long t;

then a functiorf is declared with type “function returningigned int with one unnamed parameter
with type pointer to function returningigned int with one unnamed parameter with tygigned
int ", and an identifiet with typelong int

EXAMPLE 4 On the other hand, typedef names can be used tovexwde readability. All three of the
following declarations of thsignal function specify exactly the same type, the first without making use
of any typedef names.

typedef void fv(int), (*pfv)(int);

6.7.7 Language 6.7.7

112 Committee Draft — August 3, 1998 WG14/N843

void (*signal(int, void (*)(int)))(int);
fv *signal(int, fv *);
pfv signal(int, pfv);

EXAMPLE 5 If a typedef name denotes a variable length array type, the length of the array is fixed at the
time the typedef name is defined, not each time it is used:

void copyt(int n)

{
typedef int B[n]; I B isn ints,n evaluated now.
n += 1,
B a; Il a isnints,n without+=1 .
int b[n]; Ila andb are different sizes
for (inti=1;i<n;i++)

a[i-1] = bliJ;
}

Forward references: thesignal function (7.14.1.1).

6.7.8 Initialization
Syntax
initializer:
assignment-expression
{ initializer-list }
{ initializer-list , }
initializer-list:
designatio% initializer

|n|t|aI|zer-I|sP, deS|gnat|o%pt|n|t|aI|zer

designation:
designator-list =

designator-list:
designator
designator-list designator

designator:
[constant-expression
. identifier

Constraints

No initializer shall attempt to provide a value for an object not contained within the entity
being initialized.

The type of the entity to be initialized shall be an array of unknown size or an object type
that is not a variable length array type.

6.7.7 Language 6.7.8

10

11

12

13

WG14/N843 Committee Draft — August 3, 1998 113

All the expressions in an initializer for an object that has static storage duration shall be
constant expressions or string literals.

If the declaration of an identifier has block scope, and the identifier has external or
internal linkage, the declaration shall have no initializer for the identifier.

If a designator has the form
[constant-expression

then the current object (defined below) shall have array type and the expression shall be
an integer constant expression. If the array is of unknown size, any nonnegative value is
valid.

If a designator has the form
. identifier

then the current object (defined below) shall have structure or union type and the
identifier shall be the name of a member of that type.

Semantics
An initializer specifies the initial value stored in an object.

Except where explicitly stated otherwise, for the purposes of this subclause unnamed
members of objects of structure and union type do not participate in initialization.
Unnamed members of structure objects have indeterminate value even after initialization.

If an object that has automatic storage duration is not initialized explicitly, its value is
indeterminate. If an object that has static storage duration is not initialized explicitly,
then:

— if it has pointer type, it is initialized to a null pointer;
— if it has arithmetic type, it is initialized to (positive or unsigned) zero;
— ifitis an aggregate, every member is initialized (recursively) according to these rules;

— if it is a union, the first named member is initialized (recursively) according to these
rules.

The initializer for a scalar shall be a single expression, optionally enclosed in braces. The
initial value of the object is that of the expression (after conversion); the same type
constraints and conversions as for simple assignment apply, taking the type of the scalar
to be the unqualified version of its declared type.

The rest of this subclause deals with initializers for objects that have aggregate or union
type.

The initializer for a structure or union object that has automatic storage duration shall be
either an initializer list as described below, or a single expression that has compatible

structure or union type. In the latter case, the initial value of the object, including
unnamed members, is that of the expression.

6.7.8 Language 6.7.8

14

15

16

17

18

19

20

114 Committee Draft — August 3, 1998 WG14/N843

An array of character type may be initialized by a character string literal, optionally
enclosed in braces. Successive characters of the character string literal (including the
terminating null character if there is room or if the array is of unknown size) initialize the
elements of the array.

An array with element type compatible witichar t may be initialized by a wide
string literal, optionally enclosed in braces. Successive wide characters of the wide string
literal (including the terminating null wide character if there is room or if the array is of
unknown size) initialize the elements of the array.

Otherwise, the initializer for an object that has aggregate or union type shall be a brace-
enclosed list of initializers for the elements or named members.

Each brace-enclosed initializer list has an associat@gent object When no
designations are present, subobjects of the current object are initialized in order according
to the type of the current object: array elements in increasing subscript order, structure
members in declaration order, and the first named member of a'dflidn.contrast, a
designation causes the following initializer to begin initialization of the subobject
described by the designator. Initialization then continues forward in order, beginning
with the next subobject after that described by the desighétor.

Each designator list begins its description with the current object associated with the
closest surrounding brace pair. Each item in the designator list (in order) specifies a
particular member of its current object and changes the current object for the next
designator (if any) to be that memBé&? The current object that results at the end of the
designator list is the subobject to be initialized by the following initializer.

The initialization shall occur in initializer list order, each initializer provided for a
particular subobject overriding any previously listed initializer for the same subobject; all
subobjects that are not initialized explicitly shall be initialized implicitly the same as
objects that have static storage duration.

If the aggregate contains elements or members that are aggregates or unions, or if the first
member of a union is an aggregate or union, these rules apply recursively to the
subaggregates or contained unions. If the initializer of a subaggregate or contained union
begins with a left brace, the initializers enclosed by that brace and its matching right
brace initialize the elements or members of the subaggregate or the first member of the
contained union. Otherwise, only enough initializers from the list are taken to account
for the elements or members of the subaggregate or the first member of the contained
union; any remaining initializers are left to initialize the next element or member of the

117) If the initializer list for a subaggregate or contained union does not begin with a left brace, its
subobjects are initialized as usual, but the subaggregate or contained union does not become the
current object: current objects are associated only with brace-enclosed initializer lists.

118) After a union member is initialized, the next object is not the next member of the union; instead, it is
the next subobject of an object containing the union.

119) Thus, a designator can only specify a strict subobject of the aggregate or union that is associated with
the surrounding brace pair. Note, too, that each separate designator list is independent.

6.7.8 Language 6.7.8

21

22

23

24

25

26

27

WG14/N843 Committee Draft — August 3, 1998 115

aggregate of which the current subaggregate or contained union is a patrt.

If there are fewer initializers in a brace-enclosed list than there are elements or members
of an aggregate, or fewer characters in a string literal used to initialize an array of known
size than there are elements in the array, the remainder of the aggregate shall be
initialized implicitly the same as objects that have static storage duration.

If an array of unknown size is initialized, its size is determined by the largest indexed
element with an explicit initializer. At the end of its initializer list, the array no longer
has incomplete type.

The order in which any side effects occur among the initialization list expressions is
unspecified?®

EXAMPLE 1 Provided thatcomplex.h> has bee#include d, the declarations

inti=3.5;
complexc=5+3*1;

define and initializé with the value 3 and with the valueb. 0+ 3. Q.

EXAMPLE 2 The declaration
intx[]={1,3,5};

defines and initializes as a one-dimensional array object that has three elements, as no size was specified
and there are three initializers.

EXAMPLE 3 The declaration

int y[4][3] = {
{13 5}
{2 4,61}
{35 7}
3

is a definition with a fully bracketed initialization: 1, 3, and 5 initialize the first row @he array object
y[0]), namelyy[0][0] , y[O][1] , andy[0][2] . Likewise the next two lines initializg[1] and

y[2] . The initializer ends early, sg3] is initialized with zeros. Precisely the same effect could have
been achieved by

int y[4][3] = {
1,3,5,2,4,6,3,5,7
3

The initializer fory[0] does not begin with a left brace, so three items from the list are used. Likewise the
next three are taken successivelyyd] andy[2]

EXAMPLE 4 The declaration

120) In particular, the evaluation order need not be the same as the order of subobject initialization.

6.7.8 Language 6.7.8

28

29

30

116 Committee Draft — August 3, 1998 WG14/N843

int z[4][3] = {
\ {1h{2}{3}s{4}

initializes the first column of as specified and initializes the rest with zeros.

EXAMPLE 5 The declaration
struct{inta[3], b; }w[]={{1},2};

is a definition with an inconsistently bracketed initialization. It defines an array with two element
structuresw[0].a[0] is 1 andw[1].a][0] is 2; all the other elements are zero.

EXAMPLE 6 The declaration

short q[4][3][2] = {
{1}
{2 3}
{4,5 61}
%
contains an incompletely but consistently bracketed initialization. It defines a three-dimensional array
object: q[0][0][O] is 1, q[1][0][O] is 2, q[1][0][1] is 3, and 4, 5, and 6 initialize
a[2][0][0] , a[2][0][1] , andq[2][1][0] , respectively; all the rest are zero. The initializer for
g[0][0] does not begin with a left brace, so up to six items from the current list may be used. There is
only one, so the values for the remaining five elements are initialized with zero. Likewise, the initializers
for q[1][0] andq[2][0] do not begin with a left brace, so each uses up to six items, initializing their
respective two-dimensional subaggregates. If there had been more than six items in any of the lists, a
diagnostic message would have been issued. The same initialization result could have been achieved by:

short q[4][3][2] = {
1, ,0,0,0,
0,0,0

—_—

2! l)) 1 l
4!

01w o
[NeNe

or by:
short q[4][3][2] = {

{1}

in a fully bracketed form.

Note that the fully bracketed and minimally bracketed forms of initialization are, in general, less likely to
cause confusion.

6.7.8 Language 6.7.8

31

32

33

34

35

36

WG14/N843 Committee Draft — August 3, 1998 117

EXAMPLE 7 One form of initialization that completes array types involves typedef names. Given the
declaration

typedef int A[]; // OK - declared with block scope
the declaration

Aa={1 2} b={3 451}
is identical to

intal]={1,2},b]={3,4,5}

due to the rules for incomplete types.

EXAMPLE 8 The declaration
char s[] = "abc", t[3] = "abc";

defines “plain” char array objects andt whose elements are initialized with character string literals.
This declaration is identical to

chars[]={'a’, 'b’, 'c’,\0"},
tl={a,b,c}
The contents of the arrays are modifiable. On the other hand, the declaration
char *p = "abc";

definesp with type “pointer tochar " and initializes it to point to an object with type “array ofiar ”
with length 4 whose elements are initialized with a character string literal. If an attempt is made to use
modify the contents of the array, the behavior is undefined.

EXAMPLE 9 Arrays can be initialized to correspond to the elements of an enumeration by using
designators:

enum { member_one, member_two };
const char *nm[] = {
[member_two] = "member two",
[member_one] = "member one",

EXAMPLE 10 Structure members can be initialized to nonzero values without depending on their order:

div_tanswer={.quot=2, .rem=-1};

EXAMPLE 11 Designators can be used to provide explicit initialization when unadorned initializer lists
might be misunderstood:

struct {int a[3], b; } w[] =
{ [0l.a={1}, [1].a[0] =2}

EXAMPLE 12 Space can be “allocated” from both ends of an array by using a single designator:

6.7.8 Language 6.7.8

37

38

118 Committee Draft — August 3, 1998 WG14/N843

int a[MAX] = {
1,3,57,9 [MAX-5]=8,6,4,2,0
I3
In the above, iMAXis greater than ten, there will be some zero-valued elements in the middle; if it is less
than ten, some of the values provided by the first five initializers will be overridden by the second five.

EXAMPLE 13 Any member of a union can be initialized:

union { /* ... *}u={.any_member =42},

Forward references: common definitionsstddef.n> (7.17).

6.7.8 Language 6.7.8

WG14/N843 Committee Draft — August 3, 1998 119

6.8 Statements
Syntax

statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

Semantics

A statementspecifies an action to be performed. Except as indicated, statements are
executed in sequence.

A full expressionis an expression that is not part of another expression or declarator.
Each of the following is a full expression: an initializer; the expression in an expression
statement; the controlling expression of a selection statenfenbi switch); the
controlling expression of @hile or do statement; each of the (optional) expressions of
afor statement; the (optional) expression imeturn statement. The end of a full
expression is a sequence point.

Forward references: expression and null statements (6.8.3), selection statements
(6.8.4), iteration statements (6.8.5), theurn statement (6.8.6.4).

6.8.1 Labeled statements
Syntax

labeled-statement:
identifier : statement
case constant-expression statement
default : statement

Constraints

A case or default label shall appear only in awitch statement. Further
constraints on such labels are discussed undemtdteh statement.

Semantics

Any statement may be preceded by a prefix that declares an identifier as a label name.
Labels in themselves do not alter the flow of control, which continues unimpeded across
them.

Forward references: thegoto statement (6.8.6.1), tisvitch statement (6.8.4.2).

6.8 Language 6.8.1

120 Committee Draft — August 3, 1998 WG14/N843

6.8.2 Compound statement, or block
Syntax

compound-statement:
{ block-item-lisgIDt }

block-item-list:
block-item
block-item-list block-item

block-item:
declaration
statement
Semantics

A compound statemeflso called dlock) allows a set of declarations and statements to

be grouped into one syntactic unit. The initializers of objects that have automatic storage
duration, and the variable length array declarators of ordinary identifiers with block scope
are evaluated and the values are stored in the objects (including storing an indeterminate
value in objects without an initializer) each time that the declaration is reached in the
order of execution, as if it were a statement, and within each declaration in the order that
declarators appear.

6.8.3 Expression and null statements
Syntax

expression-statement:

expressmgpt ;

Semantics

The expression in an expression statement is evaluated as a void expression for its side

effects??)

A null statemen{consisting of just a semicolon) performs no operations.

EXAMPLE 1 |If a function call is evaluated as an expression statement for its side effects only, the
discarding of its value may be made explicit by converting the expression to a void expression by means of
a cast:

int p(int);
%
(void)p(0);

EXAMPLE 2 In the program fragment

121) Such as assignments, and function calls which have side effects.

6.8.2 Language 6.8.3

WG14/N843 Committee Draft — August 3, 1998 121

char *s;
|
while (*s++ 1="\0")

a null statement is used to supply an empty loop body to the iteration statement.

EXAMPLE 3 A null statement may also be used to carry a label just before the dlosfraycompound
statement.

while (loopl) {

%
while (loop2) {
%

if (want_out)
goto end_loop1l;
%
}
%
end_loopl:;

}

Forward references: iteration statements (6.8.5).

6.8.4 Selection statements
Syntax

selection-statement:
if (expression) statement
if (expression) statementelse statement
switch (expression) statement

Semantics

A selection statement selects among a set of statements depending on the value of a
controlling expression.

6.8.3 Language 6.8.4

122 Committee Draft — August 3, 1998 WG14/N843

6.8.4.1 Thef statement

Constraints

The controlling expression of @n statement shall have scalar type.
Semantics

In both forms, the first substatement is executed if the expression compares unequal to O.
In theelse form, the second substatement is executed if the expression compares equal
to 0. If the first substatement is reached via a label, the second substatement is not
executed.

An else is associated with the lexically nearest precedingthat is allowed by the
syntax.

6.8.4.2 Theswitch statement
Constraints
The controlling expression ofsavitch statement shall have integer type.

If the switch statement causes a jump to within the scope of an identifier with a
variably modified type, the entirgwvitch statement shall be within the scope of that

identifier12?

The expression of eadase label shall be an integer constant expression and no two of
thecase constant expressions in the sasmétch statement shall have the same value
after conversion. There may be at most deéault Ilabel in aswitch statement.
(Any enclosedswitch statement may have default label or case constant
expressions with values that duplicatase constant expressions in the enclosing
switch statement.)

Semantics

A switch statement causes control to jump to, into, or past the statement that is the
switch body depending on the value of a controlling expression, and on the presence of a
default label and the values of acgse labels on or in the switch body. @ase or

default label is accessible only within the closest enclosingch statement.

The integer promotions are performed on the controlling expression. The constant
expression in eacbase label is converted to the promoted type of the controlling
expression. If a converted value matches that of the promoted controlling expression,
control jumps to the statement following the matcbase label. Otherwise, if there is
adefault label, control jumps to the labeled statement. If no convedsd constant
expression matches and there is default label, no part of the switch body is
executed.

122) That is, the declaration either precedes sivéich statement, or it follows the lastase or
default label associated with ttewvitch that is in the block containing the declaration.

6.8.4 Language 6.8.4.2

WG14/N843 Committee Draft — August 3, 1998 123

Implementation limits

As discussed in 5.2.4.1, the implementation may limit the numbeaisaf values in a
switch statement.

EXAMPLE In the artificial program fragment

switch (expr)
{
inti=4;
f(i);
case O:
i = 17;
/* falls through intodefault code */
default:
printf("%d\n", i);
}
the object whose identifier is exists with automatic storage duration (within the block) but is never
initialized, and thus if the controlling expression has a nonzero value, the caliptinthe function will
access an indeterminate value. Similarly, the call to the funtt@annot be reached.

6.8.5 lteration statements
Syntax

iteration-statement:
while (expression) statement
do statementwhile (expression) ;
for (expression ., ; expressio(r)l £ expressio(r)l

X) statement
. ﬂo_t i i
for (declaration’; expressiop expressmgpt

ot ; } statement
Constraints
The controlling expression of an iteration statement shall have scalar type.

The declaration part offar statement shall only declare identifiers for objects having
storage clasauto orregister

Semantics

An iteration statement causes a statement callelddpebodyto be executed repeatedly
until the controlling expression compares equal to O.

6.8.4.2 Language 6.8.5

124 Committee Draft — August 3, 1998 WG14/N843

6.8.5.1 Thewhile statement

The evaluation of the controlling expression takes place before each execution of the loop
body.

6.8.5.2 Thedo statement

The evaluation of the controlling expression takes place after each execution of the loop
body.

6.8.5.3 Thefor statement

Except for the behavior of@ntinue statement in the loop body, the statement
for (clause-1; expression-2; expression-3) statement

and the sequence of statements

{
clause-1;
while (expression-2) {
statement
expression-3;
}
}

are equivalent (wherelause-1can be an expression or a declaratigh). Unlike the
other iteration statements, ther statement introduces new blocks that limit the scope
of declarations and compound literals occurring in the loop.

Both clause-1and expression-3can be omitted. Ifclause-1is an expression, it is
evaluated as a void expression, asxpression-3 An omitted expression-2s replaced
by a nonzero constant.

Forward references: thecontinue statement (6.8.6.2).

123) Thusclause-1specifies initialization for the loop, possibly declaring one or more variables for use in
the loop;expression-2the controlling expression, specifies an evaluation made before each iteration,
such that execution of the loop continues until the expression compares equaxme8sion-3
specifies an operation (such as incrementing) that is performed after each iteratiansdflis a
declaration, then the scope of any variable it declares is the remainder of the declaration and the entire
loop, including the other two expressions.

6.8.5 Language 6.8.5.3

WG14/N843 Committee Draft — August 3, 1998 125

6.8.6 Jump statements
Syntax

jump-statement:
goto identifier ;
continue ;
break ;

return expressiop ot
Semantics

A jump statement causes an unconditional jump to another place.
6.8.6.1 Thegoto statement
Constraints

The identifier in goto statement shall name a label located somewhere in the enclosing
function. Agoto statement shall not jump from outside the scope of an identifier having
a variably modified type to inside the scope of that identifier.

Semantics

A goto statement causes an unconditional jump to the statement prefixed by the named
label in the enclosing function.

EXAMPLE 1 Itis sometimes convenient to jump into the middle of a complicated set of statements. The
following outline presents one possible approach to a problem based on these three assumptions:

1. The general initialization code accesses objects only visible to the current function.
2. The general initialization code is too large to warrant duplication.

3. The code to determine the next operation is at the head of the loop. (To allow it to be reached by
continue statements, for example.)

%
goto first_time;
for (;7) {
/[determine next operation
* %
if (need to reinitializg {
/I reinitialize-only code
%
first_time:
/I general initialization code
%
continue;

/I handle other operations
%

6.8.6 Language 6.8.6.1

126 Committee Draft — August 3, 1998 WG14/N843

4 EXAMPLE 2 A goto statement is not allowed to jump past any declarations of objects with variably
modified types. A jump within the scope, however, is permitted.

goto lab3; 1 Error: going INTO scope of VLA
{
double a[n];
afj] = 4.4,
lab3:
afj] = 3.3;
goto lab4; 1 OK, going WITHIN scope of VLA
afj] =5.5;
lab4:
afj] = 6.6;
}
goto lab4; 1 Error: going INTO scope of VLA

6.8.6.2 Thecontinue statement
Constraints

1 Acontinue statement shall appear only in or as a loop body.
Semantics

2 A continue statement causes a jump to the loop-continuation portion of the smallest
enclosing iteration statement; that is, to the end of the loop body. More precisely, in each
of the statements

while (/* e *NA do{ for (/* o N A
* . . [* %
continue; continue; continue;
| % * .

contin: ; contin: ; contin: ;

} } while (/* D), }

unless thecontinue statement shown is in an enclosed iteration statement (in which
case it is interpreted within that statement), it is equivalegoto contin; X2

124) Following thecontin: label is a null statement.

6.8.6.1 Language 6.8.6.2

WG14/N843 Committee Draft — August 3, 1998 127

6.8.6.3 Thebreak statement

Constraints

A break statement shall appear only in or as a switch body or loop body.
Semantics

A break statement terminates execution of the smallest enclesiiigh or iteration
statement.

6.8.6.4 Thereturn statement
Constraints

Areturn statement with an expression shall not appear in a function whose return type
is void . A return statement without an expression shall only appear in a function
whose return type igoid .

Semantics

A return statement terminates execution of the current function and returns control to
its caller. A function may have any numberefurn statements.

If areturn statement with an expression is executed, the value of the expression is
returned to the caller as the value of the function call expression. If the expression has a
type different from the return type of the function in which it appears, the value is
converted as if by assignment to an object having the return type of the furction.

EXAMPLE In:
struct s { double i; } f(void);

union {
struct {
int f1;
struct s f2;
}ul;
struct {
struct s f3;
int f4;
}ouz;
} o
struct s f(void)
{
return g.ul.f2;
}
%
g.u2.f3 = f();

there is no undefined behavior, although there would be if the assignment were done directly (without using

125) Thereturn statement is not an assignment. The overlap restriction of subclause 6.5.16.1 does not
apply to the case of function return.

6.8.6.2 Language 6.8.6.4

128 Committee Draft — August 3, 1998 WG14/N843

a function call to fetch the value).

6.8.6.4 Language 6.8.6.4

WG14/N843 Committee Draft — August 3, 1998 129

6.9 External definitions
Syntax

translation-unit:
external-declaration
translation-unit external-declaration

external-declaration:
function-definition
declaration

Constraints

The storage-class specifiaagto and register shall not appear in the declaration
specifiers in an external declaration.

There shall be no more than one external definition for each identifier declared with
internal linkage in a translation unit. Moreover, if an identifier declared with internal
linkage is used in an expression (other than as a part of the operandizaoft
operator), there shall be exactly one external definition for the identifier in the translation
unit.

Semantics

As discussed in 5.1.1.1, the unit of program text after preprocessing is a translation unit,
which consists of a sequence of external declarations. These are described as “external”
because they appear outside any function (and hence have file scope). As discussed in
6.7, a declaration that also causes storage to be reserved for an object or a function named
by the identifier is a definition.

An external definitioris an external declaration that is also a definition of a function or an
object. If an identifier declared with external linkage is used in an expression (other than
as part of the operand ofsizeof operator), somewhere in the entire program there
shall be exactly one external definition for the identifier; otherwise, there shall be no more
than onet26)

6.9.1 Function definitions
Syntax

function-definition:
declaration-specifiers declarator declaration-gg{ compound-statement

declaration-list:
declaration
declaration-list declaration

126) Thus, if an identifier declared with external linkage is not used in an expression, there need be no
external definition for it.

6.9 Language 6.9.1

130 Committee Draft — August 3, 1998 WG14/N843

Constraints

The identifier declared in a function definition (which is the name of the function) shall
have a function type, as specified by the declarator portion of the function defifition.

The return type of a function shall beid or an object type other than array type.

The storage-class specifier, if any, in the declaration specifiers shall beegirer or
static

If the declarator includes a parameter type list, the declaration of each parameter shall
include an identifier, except for the special case of a parameter list consisting of a single
parameter of typgoid , in which case there shall not be an identifier. No declaration list
shall follow.

If the declarator includes an identifier list, each declaration in the declaration list shall
have at least one declarator, those declarators shall declare only identifiers from the
identifier list, and every identifier in the identifier list shall be declared. An identifier
declared as a typedef name shall not be redeclared as a parameter. The declarations in the
declaration list shall contain no storage-class specifier otherréuaster and no
initializations.

Semantics

The declarator in a function definition specifies the name of the function being defined
and the identifiers of its parameters. If the declarator includes a parameter type list, the
list also specifies the types of all the parameters; such a declarator also serves as a
function prototype for later calls to the same function in the same translation unit. If the
declarator includes an identifier If$f) the types of the parameters shall be declared in a
following declaration list. In either case, the type of each parameter is adjusted as
described in 6.7.5.3 for a parameter type list; the resulting type shall be an object type.

If a function that accepts a variable number of arguments is defined without a parameter
type list that ends with the ellipsis notation, the behavior is undefined.

127) The intent is that the type category in a function definition cannot be inherited from a typedef:

typedef int F(void); [* typeF is “function of no arguments returnirigt " */
F f, g; [*f andg both have type compatible with */
Ff{r ..*} [* WRONG: syntax/constraint erréf

FagO{r . ¥} [* WRONG: declares that returns a functiort/

int f(void) { /* . ¥} /* RIGHT:f has type compatible with */

intg() {/* . ¥} /* RIGHT: g has type compatible with */

F *e(void) { /* . ¥} [* e returns a pointer to a functiofi

F *((e))(void) { /* e Y same: parentheses irrelevatit

int (*fp)(void); I*fp points to a function that has type */

F *Fp; /* Fp points to a function that has type */

128) See “future language directions” (6.11.4).

6.9.1 Language 6.9.1

10

11

12

13

14

WG14/N843 Committee Draft — August 3, 1998 131

Each parameter has automatic storage duration. Its identifier is an Ivalue, which is in

effect declared at the head of the compound statement that constitutes the function body
(and therefore cannot be redeclared in the function body except in an enclosed block).
The layout of the storage for parameters is unspecified.

On entry to the function, all size expressions of variably modified parameters are

evaluated and the value of each argument expression is converted to the type of the
corresponding parameter as if by assignment. (Array expressions and function

designators as arguments were converted to pointers before the call.)

After all parameters have been assigned, the compound statement that constitutes the
body of the function definition is executed.

If the} that terminates a function is reached, and the value of the function call is used by
the caller, the behavior is undefined.

EXAMPLE 1 In the following:
extern int max(int a, int b)

{
}

extern is the storage-class specifier aimd is the type specifiermax(int a, intb) is the
function declarator; and

returna>b?a:b;

{ returna>b?a:b;}

is the function body. The following similar definition uses the identifier-list form for the parameter
declarations:

extern int max(a, b)
int a, b;

{
}

Hereint a, b; is the declaration list for the parameters. The difference between these two definitions is
that the first form acts as a prototype declaration that forces conversion of the arguments of subsequent calls
to the function, whereas the second form does not.

returna>b?a:b;

EXAMPLE 2 To pass one function to another, one might say

int f(void);
|
a(®);

Then the definition off might read

void g(int (*funcp)(void))
{

}

or, equivalently,

/* ... * (*funcp)() /* or funcp() I

6.9.1 Language 6.9.1

132 Committee Draft — August 3, 1998 WG14/N843

void g(int func(void))
{

}

f* ... * func() /* or (*func)() v ¥

6.9.2 External object definitions
Semantics

If the declaration of an identifier for an object has file scope and an initializer, the
declaration is an external definition for the identifier.

A declaration of an identifier for an object that has file scope without an initializer, and
without a storage-class specifier or with the storage-class spetatier , constitutes a
tentative definitionlf a translation unit contains one or more tentative definitions for an
identifier, and the translation unit contains no external definition for that identifier, then
the behavior is exactly as if the translation unit contains a file scope declaration of that
identifier, with the composite type as of the end of the translation unit, with an initializer
equal to 0.

If the declaration of an identifier for an object is a tentative definition and has internal
linkage, the declared type shall not be an incomplete type.

EXAMPLE 1
intil=1; I definition, external linkage
staticintia=2; // definition, internal linkage
externinti3=3; // definition, external linkage
int i4; i tentative definition, external linkage
static int i5; I tentative definition, internal linkage
intil; i valid tentative definition, refers to previous
inti2; i 6.2.2 renders undefined, linkage disagreement
inti3; i valid tentative definition, refers to previous
int i4; i valid tentative definition, refers to previous
int i5; i 6.2.2 renders undefined, linkage disagreement
extern intil; I refers to previous, whose linkage is external
extern int i2; I refers to previous, whose linkage is internal
extern int i3; 1 refers to previous, whose linkage is external
extern int i4; I refers to previous, whose linkage is external
extern int i5; 1 refers to previous, whose linkage is internal

EXAMPLE 2 If at the end of the translation unit containing

inti[];
the arrayi still has incomplete type, the implicit initializer causes it to have one element, which is set to
zero on program startup.

6.9.1 Language 6.9.2

WG14/N843 Committee Draft — August 3, 1998

6.10 Preprocessing directives
Syntax

6.10

preprocessing-file:
groupopt
group:
group-part
group group-part
group-part:
pp-tokeng i new-line
if-section
control-line
if-section:
if-group eln‘-group%pt else-grou%pt endif-line
if-group:
if constant-expression new-line gro%;[)
ifdef identifier new-line grou
ifndef identifier new-line grou ot
elif-groups:
elif-group
elif-groups elif-group
elif-group:
elif constant-expression new-line gr%%?
else-group:
else new-line groqut
endif-line:
endif new-line
control-line:
include pp-tokens new-line
define identifier replacement-list new- Iine
define identifier Iparen identifier-list
replacem?ent list new-line
define identifier Iparen ...) replacement-list new-line
define identifier Iparen identifier-list, ...)
replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-token new-line
pragma pp- tokeng new-line
new-line

Language

133

6.10

134 Committee Draft — August 3, 1998 WG14/N843

Iparen:
a (character not immediately preceded by white-space

replacement-list:
pp-tokengIot

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

Description

A preprocessing directive consists of a sequence of preprocessing tokens that begins with
a# preprocessing token that (at the start of translation phase 4) is either the first character
in the source file (optionally after white space containing no new-line characters) or that
follows white space containing at least one new-line character, and is ended by the next
new-line characte®®® A new-line character ends the preprocessing directive even if it
occurs within what would otherwise be an invocation of a function-like macro.

Constraints

The only white-space characters that shall appear between preprocessing tokens within a
preprocessing directive (from just after the introducih@reprocessing token through

just before the terminating new-line character) are space and horizontal-tab (including
spaces that have replaced comments or possibly other white-space characters in
translation phase 3).

Semantics

The implementation can process and skip sections of source files conditionally, include
other source files, and replace macros. These capabilities are pedl@dcessing
because conceptually they occur before translation of the resulting translation unit.

The preprocessing tokens within a preprocessing directive are not subject to macro
expansion unless otherwise stated.

EXAMPLE In:

#define EMPTY
EMPTY # include <file.h>

the sequence of preprocessing tokens on the second tiotaipreprocessing directive, because it does not
begin with a# at the start of translation phase 4, even though it will do so after the Ed&tdYhas been
replaced.

129) Thus, preprocessing directives are commonly called “lines”. These “lines” have no other syntactic
significance, as all white space is equivalent except in certain situations during preprocessing (see the
character string literal creation operator in 6.10.3.2, for example).

6.10 Language 6.10

WG14/N843 Committee Draft — August 3, 1998 135

6.10.1 Conditional inclusion
Constraints

The expression that controls conditional inclusion shall be an integer constant expression
except that: it shall not contain a cast; identifiers (including those lexically identical to
keywords) are interpreted as described béffvand it may contain unary operator
expressions of the form

defined identifier
or
defined (identifier)

which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it is
predefined or if it has been the subject ¢idafine preprocessing directive without an
intervening#undef directive with the same subject identifier), O if it is not.

Semantics
Preprocessing directives of the forms

if constant-expression new-line gr%lbp
elif constant-expression new-line gr%%;g

check whether the controlling constant expression evaluates to nonzero.

Prior to evaluation, macro invocations in the list of preprocessing tokens that will become
the controlling constant expression are replaced (except for those macro names modified
by the defined unary operator), just as in normal text. If the toldefined is
generated as a result of this replacement process or used#fitned unary operator

does not match one of the two specified forms prior to macro replacement, the behavior is
undefined. After all replacements due to macro expansion andefireed unary
operator have been performed, all remaining identifiers are replaced with the pp-number
0, and then each preprocessing token is converted into a token. The resulting tokens
compose the controlling constant expression which is evaluated according to the rules of
6.6, except that all signed integer types and all unsigned integer types act as if they have
the same representation as, respectively, the ipp@sx_t anduintmax_t defined

in the headekstdint.h> . This includes interpreting character constants, which may
involve converting escape sequences into execution character set members. Whether the
numeric value for these character constants matches the value obtained when an identical
character constant occurs in an expression (other than within ar #elif directive)

is implementation-definetf?) Also, whether a single-character character constant may
have a negative value is implementation-defined.

Preprocessing directives of the forms

130) Because the controlling constant expression is evaluated during translation phase 4, all identifiers
either are or are not macro names — there simply are no keywords, enumeration constants, etc.

6.10.1 Language 6.10.1

136 Committee Draft — August 3, 1998 WG14/N843

ifdef identifier new-line group
ifndef identifier new-line grougzt

check whether the identifier is or is not currently defined as a macro name. Their
conditions are equivalent t#ifdefined identifier and #if /defined identifier
respectively.

Each directive’s condition is checked in order. If it evaluates to false (zero), the group
that it controls is skipped: directives are processed only through the name that determines
the directive in order to keep track of the level of nested conditionals; the rest of the
directives’ preprocessing tokens are ignored, as are the other preprocessing tokens in the
group. Only the first group whose control condition evaluates to true (nonzero) is
processed. If none of the conditions evaluates to true, and thetelsea directive, the

group controlled by théelse is processed; lacking#else directive, all the groups

until the#endif are skipped?3?

Forward references: macro replacement (6.10.3), source file inclusion (6.10.2), largest
integer types (7.18.1.5).

6.10.2 Source file inclusion
Constraints

A #include directive shall identify a header or source file that can be processed by the
implementation.

Semantics
A preprocessing directive of the form
include < h-char-sequence new-line

searches a sequence of implementation-defined places for a header identified uniquely by
the specified sequence between<tand> delimiters, and causes the replacement of that
directive by the entire contents of the header. How the places are specified or the header
identified is implementation-defined.

A preprocessing directive of the form
include" g-char-sequence new-line

causes the replacement of that directive by the entire contents of the source file identified
by the specified sequence between"thgelimiters. The named source file is searched

131) Thus, the constant expression in the follow#ifg directive andf statement is not guaranteed to
evaluate to the same value in these two contexts.

#if 'z’ -'a’== 25
if (2’ -'a’ == 25)
132) As indicated by the syntax, a preprocessing token shall not foliéelsa or #endif directive

before the terminating new-line character. However, comments may appear anywhere in a source file,
including within a preprocessing directive.

6.10.1 Language 6.10.2

WG14/N843 Committee Draft — August 3, 1998 137

for in an implementation-defined manner. If this search is not supported, or if the search
fails, the directive is reprocessed as if it read

include < h-char-sequence new-line

with the identical contained sequence (includingharacters, if any) from the original
directive.

A preprocessing directive of the form
include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing
tokens afterinclude in the directive are processed just as in normal text. (Each
identifier currently defined as a macro name is replaced by its replacement list of
preprocessing tokens.) The directive resulting after all replacements shall match one of
the two previous form&3®) The method by which a sequence of preprocessing tokens
between & and a> preprocessing token pair or a pair'otharacters is combined into a
single header name preprocessing token is implementation-defined.

The implementation shall provide unique mappings for sequences consisting of one or
more letters or digits (as defined in 5.2.1) followed by a perigchid a single letter.

The first character shall be a letter. The implementation may ignore the distinctions of
alphabetical case and restrict the mapping to eight significant characters before the
period.

A #include preprocessing directive may appear in a source file that has been read
because of &include directive in another file, up to an implementation-defined
nesting limit (see 5.2.4.1).

EXAMPLE 1 The most common uses#ificlude preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

EXAMPLE 2 This illustrates macro-replacédhclude directives:

#if VERSION ==
#define INCFILE "versl.h"
#elif VERSION ==
#define INCFILE "vers2.h" [/ and so on
#else
#define INCFILE "versN.h"
#endif

#include INCFILE

133) Note that adjacent string literals are not concatenated into a single string literal (see the translation
phases in 5.1.1.2); thus, an expansion that results in two string literals is an invalid directive.

6.10.2 Language 6.10.2

138 Committee Draft — August 3, 1998 WG14/N843

Forward references: macro replacement (6.10.3).

6.10.3 Macro replacement
Constraints

Two replacement lists are identical if and only if the preprocessing tokens in both have
the same number, ordering, spelling, and white-space separation, where all white-space
separations are considered identical.

An identifier currently defined as a macro without usépafen (an object-like macrd
shall not be redefined by anoth#define preprocessing directive unless the second
definition is an object-like macro definition and the two replacement lists are identical.

An identifier currently defined as a macro udpayen (a function-like macrp shall not

be redefined by anothédefine preprocessing directive unless the second definition is

a function-like macro definition that has the same number and spelling of parameters, and
the two replacement lists are identical.

If the identifier-list in the macro definition does not end with an ellipsis, the number of
arguments, including those arguments consisting of no preprocessing tokens, in an
invocation of a function-like macro shall agree with the number of parameters in the
macro definition. Otherwise, there shall be more arguments in the invocation than there
are parameters in the macro definition (excluding .the). There shall exist g
preprocessing token that terminates the invocation.

The identifier VA _ARGS __ shall only occur in the replacement-list o#tdefine
preprocessing directive using the ellipsis notation in the arguments.

A parameter identifier in a function-like macro shall be uniquely declared within its
scope.

Semantics

The identifier immediately following th@efine is called theanacro nameThere is one

name space for macro names. Any white-space characters preceding or following the
replacement list of preprocessing tokens are not considered part of the replacement list
for either form of macro.

If a# preprocessing token, followed by an identifier, occurs lexically at the point at which
a preprocessing directive could begin, the identifier is not subject to macro replacement.

A preprocessing directive of the form
define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the matf® name
to be replaced by the replacement list of preprocessing tokens that constitute the
remainder of the directive.

134) Since, by macro-replacement time, all character constants and string literals are preprocessing tokens,
not sequences possibly containing identifier-like subsequences (see 5.1.1.2, translation phases), they
are never scanned for macro names or parameters.

6.10.2 Language 6.10.3

10

11

12

WG14/N843 Committee Draft — August 3, 1998 139

A preprocessing directive of the form

define identifier Iparen identifier-lisot t) replacement-list new-line
define identifier Iparen...) replacement-list new-line
define identifier Iparen identifier-list, ...) replacement-list new-line

defines a function-like macro with arguments, similar syntactically to a function call. The
parameters are specified by the optional list of identifiers, whose scope extends from their
declaration in the identifier list until the new-line character that terminate&iédime
preprocessing directive. Each subsequent instance of the function-like macro name
followed by a(as the next preprocessing token introduces the sequence of preprocessing
tokens that is replaced by the replacement list in the definition (an invocation of the
macro). The replaced sequence of preprocessing tokens is terminated by the matching
preprocessing token, skipping intervening matched pairs of left and right parenthesis
preprocessing tokens. Within the sequence of preprocessing tokens making up an
invocation of a function-like macro, new-line is considered a normal white-space
character.

The sequence of preprocessing tokens bounded by the outside-most matching parentheses
forms the list of arguments for the function-like macro. The individual arguments within

the list are separated by comma preprocessing tokens, but comma preprocessing tokens
between matching inner parentheses do not separate arguments. If there are sequences of
preprocessing tokens within the list of arguments that would otherwise act as
preprocessing directives, the behavior is undefined.

If there is a.. in the identifier-list in the macro definition, then the trailing arguments,
including any separating comma preprocessing tokens, are merged to form a single item:
the variable argumentsThe number of arguments so combined is such that, following
merger, the number of arguments is one more than the number of parameters in the macro
definition (excluding the..).

6.10.3.1 Argument substitution

After the arguments for the invocation of a function-like macro have been identified,
argument substitution takes place. A parameter in the replacement list, unless preceded
by a# or ## preprocessing token or followed by## preprocessing token (see below), is
replaced by the corresponding argument after all macros contained therein have been
expanded. Before being substituted, each argument’s preprocessing tokens are
completely macro replaced as if they formed the rest of the preprocessing file; no other
preprocessing tokens are available.

An identifier_ VA _ARGS __ that occurs in the replacement list shall be treated as if it
were a parameter, and the variable arguments shall form the preprocessing tokens used to
replace it.

6.10.3 Language 6.10.3.1

140 Committee Draft — August 3, 1998 WG14/N843

6.10.3.2 The# operator
Constraints

Each# preprocessing token in the replacement list for a function-like macro shall be
followed by a parameter as the next preprocessing token in the replacement list.

Semantics

If, in the replacement list, a parameter is immediately preceded#bopraprocessing

token, both are replaced by a single character string literal preprocessing token that
contains the spelling of the preprocessing token sequence for the corresponding
argument. Each occurrence of white space between the argument’s preprocessing tokens
becomes a single space character in the character string literal. White space before the
first preprocessing token and after the last preprocessing token composing the argument
is deleted. Otherwise, the original spelling of each preprocessing token in the argument
is retained in the character string literal, except for special handling for producing the
spelling of string literals and character constants:character is inserted before edch

and\ character of a character constant or string literal (including the deliniting
characters), except that it is unspecified whethercharacter is inserted before the
character beginning a universal character name. If the replacement that results is not a
valid character string literal, the behavior is undefined. The character string literal
corresponding to an empty argumerit'is The order of evaluation &f and## operators

is unspecified.

6.10.3.3 The## operator
Constraints

A ## preprocessing token shall not occur at the beginning or at the end of a replacement
list for either form of macro definition.

Semantics

If, in the replacement list of a function-like macro, a parameter is immediately preceded
or followed by a## preprocessing token, the parameter is replaced by the corresponding
argument’s preprocessing token sequence; however, if an argument consists of no
preprocessing tokens, the parameter is replaced fdgca@markerpreprocessing token
instead.

For both object-like and function-like macro invocations, before the replacement list is
reexamined for more macro names to replace, each instanegtgéraprocessing token

in the replacement list (not from an argument) is deleted and the preceding preprocessing
token is concatenated with the following preprocessing token. Placemarker
preprocessing tokens are handled specially: concatenation of two placemarkers results in
a single placemarker preprocessing token, and concatenation of a placemarker with a
non—placemarker preprocessing token results in the non—placemarker preprocessing
token. If the result is not a valid preprocessing token, the behavior is undefined. The
resulting token is available for further macro replacement. The order of evaluatién of
operators is unspecified.

6.10.3.1 Language 6.10.3.3

WG14/N843 Committee Draft — August 3, 1998 141

4 EXAMPLE In the following fragment:

#define hash_hash # ## #

#define mkstr(a) # a

#define in_between(a) mkstr(a)

#define join(c, d) in_between(c hash_hash d)

char p[] = join(x, y); // equivalent to
I/l char p[] = "X ## y";

The expansion produces, at various stages:
join(x, y)
in_between(x hash_hash y)
in_between(x ##)

mkstr(x ## y)

"X H#H# Y

In other words, expandingash_hash produces a new token, consisting of two adjacent sharp signs, but
this new token is not thié# operator.

6.10.3.4 Rescanning and further replacement

1 After all parameters in the replacement list have been substitutedt aamt ##
processing has taken place, all placemarker preprocessing tokens are removed. Then, the
resulting preprocessing token sequence is rescanned, along with all subsequent
preprocessing tokens of the source file, for more macro names to replace.

2 If the name of the macro being replaced is found during this scan of the replacement list
(not including the rest of the source file's preprocessing tokens), it is not replaced.
Further, if any nested replacements encounter the name of the macro being replaced, it is
not replaced. These nonreplaced macro name preprocessing tokens are no longer
available for further replacement even if they are later (re)examined in contexts in which
that macro name preprocessing token would otherwise have been replaced.

3 The resulting completely macro-replaced preprocessing token sequence is not processed
as a preprocessing directive even if it resembles one, but all pragma unary operator
expressions within it are then processed as specified in 6.10.9 below.

6.10.3.5 Scope of macro definitions

1 A macro definition lasts (independent of block structure) until a correspo#dimdef
directive is encountered or (if none is encountered) until the end of translation phase 4.

2 A preprocessing directive of the form
undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if
the specified identifier is not currently defined as a macro name.

6.10.3.3 Language 6.10.3.5

142 Committee Draft — August 3, 1998 WG14/N843

EXAMPLE 1 The simplest use of this facility is to define a “manifest constant”, as in
#define TABSIZE 100
int table[TABSIZE];

EXAMPLE 2 The following defines a function-like macro whose value is the maximum of its arguments.

It has the advantages of working for any compatible types of the arguments and of generating in-line code
without the overhead of function calling. It has the disadvantages of evaluating one or the other of its
arguments a second time (including side effects) and generating more code than a function if invoked
several times. It also cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

EXAMPLE 3 To illustrate the rules for redefinition and reexamination, the sequence

#define x 3
#define f(a) f(x * (a))
#undef x

#define x 2
#define g f
#define z z[0]
#define h aC”
#define m(a) a(w)
#define w 0,1

#define t(a) a
#define p() int
#define q(x) X
#define r(x,y) x ## y
#define str(x) # x

f(y+1) + f(f(2)) % t(t(g)(0) + 1)(1);
g(x+(3,4)-w) | h 5) &m

(f)y'm(m);
PO i[q0] = { a(1), r(2,3), r(4,), r(;5), r(,)
char c[2][6] = { str(hello), str() };

results in

f(2 > (y+1)) + (2 * (2 * (z[0])))) % (2 * (0)) + t(1);
f(2 * (2+(3,4)-0,1)) | f(2 * (" 5)) & f(2 * (0,1))"m(0,1);
inti ={1,23,4,5, }

char c[2][6] = { "hello", ™ };

EXAMPLE 4 To illustrate the rules for creating character string literals and concatenating tokens, the
sequence

6.10.3.5 Language 6.10.3.5

WG14/N843 Committee Draft — August 3, 1998 143

#define str(s) #s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, X" #t "= %s", \
X ## s, X ## 1)
#define INCFILE(n) vers##n// from previougtinclude example
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)

#define HIGHLOW "hello"

#define LOW LOW ", world"

debug(1, 2);

fputs(str(strncmp("abc\0d", "abc", \4") // this goes away

==0) str(: @\n), s);
#include xstr(INCFILE(2).h)
glue(HIGH, LOW);
xglue(HIGH, LOW)

results in
printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
fputs(
"strncmp(\"abc\\0d\", \"abc\", \\4’) == 0" ": @\n",
s);
#include "vers2.h" (after macro replacement, before file access)
"hello";

"hello" ", world"
or, after concatenation of the character string literals,
printf("x1= %d, x2= %s", x1, x2);

fputs(
"strncmp(\"abc\\0d\", \"abc\", \\4") == 0: @\n",
s);
#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello, world"

Space around théand## tokens in the macro definition is optional.

EXAMPLE 5 To illustrate the rules for
placemarker## placemarker
the sequence

#define t(x,y,z) x ## y ## z
int j[] = {(1,2,3), t(,4,5), t(6,,7), 1(8,9,),
t(lon)r t(!11!)1 t(,,12), t(n) }1

results in

int j[] = { 123, 45, 67, 89,
10,11, 12, }

6.10.3.5 Language 6.10.3.5

144 Committee Draft — August 3, 1998 WG14/N843

EXAMPLE 6 To demonstrate the redefinition rules, the following sequence is valid.

#define OBJ_LIKE (1-1)
#define OBJ_LIKE [* white space*/ (1-1) /* other */
#define FUNC_LIKE(a) (a)
#define FUNC_LIKE(a)(I* note the white spacé/ \
a /* other stuff on this line
*/)
But the following redefinitions are invalid:
#define OBJ_LIKE (0) I* different token sequenc¥
#define OBJ_LIKE a-13)/r~ different white spacet/
#define FUNC_LIKE(b) (a) /* different parameter usagé/
#define FUNC_LIKE(b) (b) /* different parameter spelling/

EXAMPLE 7 Finally, to show the variable argument list macro facilities:

#define debug(...) fprintf(stderr, _ VA ARGS _)
#define showlist(...) puts(#__VA ARGS)
#define report(test, ...) ((test)?puts(#test):\
printfCc. VA _ARGS))
debug("Flag");
debug("X = %d\n", x);
showlist(The first, second, and third items.);
report(x>y, "X is %d but y is %d", X, y);
results in
fprintf(stderr, "Flag");
fprintf(stderr, "X = %d\n", x);
puts("The first, second, and third items.");

((x>y)?puts("x>y"):
printf("x is %d but y is %d", X, y));

6.10.4 Line control

Constraints

The string literal of #&line directive, if present, shall be a character string literal.
Semantics

Theline numberof the current source line is one greater than the number of new-line
characters read or introduced in translation phase 1 (5.1.1.2) while processing the source
file to the current token.

A preprocessing directive of the form
line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins
with a source line that has a line number as specified by the digit sequence (interpreted as
a decimal integer). The digit sequence shall not specify zero, nor a number greater than

6.10.3.5 Language 6.10.4

WG14/N843 Committee Draft — August 3, 1998 145

2147483647.
A preprocessing directive of the form
line digit-sequence” s-char-sequen%%t" new-line

sets the presumed line number similarly and changes the presumed name of the source
file to be the contents of the character string literal.

A preprocessing directive of the form
line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing
tokens aftedine on the directive are processed just as in normal text (each identifier
currently defined as a macro name is replaced by its replacement list of preprocessing
tokens). The directive resulting after all replacements shall match one of the two
previous forms and is then processed as appropriate.

6.10.5 Error directive

Semantics

A preprocessing directive of the form
error pp-tokengpt new-line

causes the implementation to produce a diagnostic message that includes the specified
sequence of preprocessing tokens.

6.10.6 Pragma directive

Semantics

A preprocessing directive of the form
pragma pp-tokengIot new-line

where the preprocessing tok&TDC does not immediately followpragma in the
directive (prior to any macro replacemént) causes the implementation to behave in a
manner which it shall document. The behavior might cause translation to fail or cause
the translator or the resulting program to behave in a non-conforming manner. Any such
pragma that is not recognized by the implementation is ignored.

If the preprocessing toke3TDCdoes immediately follovpragma in the directive (prior

to any macro replacement), then no macro replacement is performed on the directive, and
the directive shall have one of the following forms whose meanings are described
elsewhere:

135) An implementation is not required to perform macro replacement in pragmas, but it is permitted
except for in standard pragmas (wh&EDCimmediately followspragma). If the result of macro
replacement in a non-standard pragma has the same form as a standard pragma, the behavior is still
implementation-defined; an implementation is permitted to behave as if it were the standard pragma,
but is not required to.

6.10.4 Language 6.10.6

146

Committee Draft — August 3, 1998 WG14/N843

#pragma STDC FP_CONTRACT on-off-switch
#pragma STDC FENV_ACCESS on-off-switch
#pragma STDC CX_LIMITED_RANGE on-off-switch

on-off-switch one of

ON OFF DEFAULT

Forward references: the FP_CONTRACPragma (7.12.2), thEENV_ACCES$®ragma
(7.6.1), theCX_LIMITED_RANGEpragma (7.3.4).

6.10.7 Null directive

Semantics

A preprocessing directive of the form

new-line

has no effect.

6.10.8 Predefined macro names
The following macro names shall be defined by the implementation:

__LINE_ _

__FILE_ _
__DATE__

__TIME_ _

__STDC__

The presumed line number (within the current source file) of the current
source line (a decimal constaftf)

The presumed name of the current source file (a character string fit&al).

The date of translation of the source file: a character string literal of the
form "Mmm dd yyyy" , where the names of the months are the same as
those generated by tlasctime function, and the first character @d is

a space character if the value is less than 10. If the date of translation is not
available, an implementation-defined valid date shall be supplied.

The time of translation of the source file: a character string literal of the
form "hh:mm:ss" as in the time generated by thectime function. If

the time of translation is not available, an implementation-defined valid
time shall be supplied.

The decimal constant 1, intended to indicate a conforming implementation.

__STDC_VERSION__ The decimal constar99901L .137)
The following macro names are conditionally defined by the implementation:

__STDC_ISO_10646_ _ A decimal constant of the formyyymmL (for example,

199712L), intended to indicate that values of type
wchar_t are the coded representations of the characters

136) The presumed line number and source file name can be changedlimethedirective.

137) This macro was not specified in ISO/IEC 9899:1990 and was specifils2b489L in ISO/IEC
9899:AMD1:1995

6.10.6

Language 6.10.8

WG14/N843 Committee Draft — August 3, 1998 147

defined by ISO/IEC 10646, along with all amendments and
technical corrigenda as of the specified year and month.

__STDC IEC 559 The decimal constant 1, intended to indicate conformance to
the specifications in annex F (IEC 60559 floating-point
arithmetic).

__STDC_IEC_559 COMPLEX__The decimal constant 1, intended to indicate
adherence to the specifications in informative annex G (IEC
60559 compatible complex arithmetic).

The values of the predefined macros (except fdtINE_ _ and__FILE_) remain
constant throughout the translation unit.

None of these macro names, nor the identdieiined , shall be the subject of a
#define or a#undef preprocessing directive. Any other predefined macro names
shall begin with a leading underscore followed by an uppercase letter or a second
underscore.

Forward references: theasctime function (7.23.3.1).

6.10.9 Pragma operator

Semantics

A unary operator expression of the form:
_Pragma (string-literal)

is processed as follows: The string literaldisstringizedby deleting theL prefix, if

present, deleting the leading and trailing double-quotes, replacing each escape sequence
\" by a double-quote, and replacing each escape seqUermea single backslash. The
resulting sequence of characters is processed through translation phase 3 to produce
preprocessing tokens that are executed as if they wergphekensin a pragma
directive. The original four preprocessing tokens in the unary operator expression are
removed.

EXAMPLE A directive of the form:
#pragma listing on ".\listing.dir"
can also be expressed as:

The latter form is processed in the same way whether it appears literally as shown, or results from macro
replacement, as in:

#define LISTING(x) PRAGMA(listing on #Xx)
#define PRAGMA(X) _Pragmaf(#x)

LISTING (..\listing.dir)

6.10.8 Language 6.10.9

148 Committee Draft — August 3, 1998 WG14/N843

6.11 Future language directions

6.11.1 Character escape sequences

Lowercase letters as escape sequences are reserved for future standardization. Other
characters may be used in extensions.

6.11.2 Storage-class specifiers

The placement of a storage-class specifier other than at the beginning of the declaration
specifiers in a declaration is an obsolescent feature.

6.11.3 Function declarators

The use of function declarators with empty parentheses (not prototype-format parameter
type declarators) is an obsolescent feature.

6.11.4 Function definitions

The use of function definitions with separate parameter identifier and declaration lists
(not prototype-format parameter type and identifier declarators) is an obsolescent feature.

6.11.5 Pragma directives
Pragmas whose firpp-tokenis STDCare reserved for future standardization.

6.11 Language 6.11.5

WG14/N843 Committee Draft — August 3, 1998 149

7. Library

7.1 Introduction

7.1.1 Definitions of terms

A stringis a contiguous sequence of characters terminated by and including the first null
character. The ternrmultibyte stringis sometimes used instead to emphasize special
processing given to multibyte characters contained in the string or to avoid confusion
with a wide string. Apointer to a stringis a pointer to its initial (lowest addressed)
character. Théength of a strings the number of characters preceding the null character
and thevalue of a strings the sequence of the values of the contained characters, in
order.

A letter is a printing character in the execution character set corresponding to any of the
52 required lowercase and uppercase letters in the source character set, listed in 5.2.1.

Thedecimal-point characters the character used by functions that convert floating-point
numbers to or from character sequences to denote the beginning of the fractional part of
such character sequendé®. It is represented in the text and examples by a period, but
may be changed by tlsetlocale function.

A wide characteris a code value (a binary encoded integer) of an object of type
wchar_t that corresponds to a member of the extended characté?)set.

A null wide characteiis a wide character with code value zero.

A wide stringis a contiguous sequence of wide characters terminated by and including
the first null wide character. pointer to a wide strings a pointer to its initial (lowest
addressed) wide character. Tleagth of a wide strings the number of wide characters
preceding the null wide character and #adue of a wide strings the sequence of code
values of the contained wide characters, in order.

A shift sequencas a contiguous sequence of bytes within a multibyte string that
(potentially) causes a change in shift state (see 5.2.1.2). A shift sequence shall not have a
corresponding wide character; it is instead taken to be an adjunct to an adjacent multibyte
charactet*®

138) The functions that make use of the decimal-point character are the string conversion functions
(7.20.1), the wide-string numeric conversion functions (7.24.4.1), the formatted input/output functions
(7.19.6), and the formatted wide-character input/output functions (7.24.2).

139) An equivalent definition can be found in 6.4.4.4.

140) For state-dependent encodings, the valueMirCUR_MAZnd MB_LEN_MA)shall thus be large
enough to count all the bytes in any complete multibyte character plus at least one adjacent shift
sequence of maximum length. Whether these counts provide for more than one shift sequence is the
implementation’s choice.

7 Library 7.1.1

150 Committee Draft — August 3, 1998 WG14/N843

Forward references: character handling (7.4), tisetlocale function (7.11.1.1).

7.1.2 Standard headers

Each library function is declared, with a type that includes a prototypeheader,
whose contents are made available by #heclude preprocessing directive. The
header declares a set of related functions, plus any necessary types and additional macros
needed to facilitate their use. Declarations of types described in this clause shall not
include type qualifiers, unless explicitly stated otherwise.

141)

The standard headers are

<assert.h> <inttypes.h> <signal.h> <stdlib.h>
<complex.h> <is0646.h> <stdarg.h> <string.h>
<ctype.h> <limits.h> <stdbool.h> <tgmath.h>
<errno.h> <locale.h> <stddef.h> <time.h>
<fenv.h> <math.h> <stdint.h> <wchar.h>
<float.h> <setjmp.h> <stdio.h> <wctype.h>

If a file with the same name as one of the abovend > delimited sequences, not
provided as part of the implementation, is placed in any of the standard places that are
searched for included source files, the behavior is undefined.

Standard headers may be included in any order; each may be included more than once in
a given scope, with no effect different from being included only once, except that the
effect of including<assert.h> depends on the definition DEBUQsee 7.2). If

used, a header shall be included outside of any external declaration or definition, and it
shall first be included before the first reference to any of the functions or objects it
declares, or to any of the types or macros it defines. However, if an identifier is declared

or defined in more than one header, the second and subsequent associated headers may be
included after the initial reference to the identifier. The program shall not have any
macros with names lexically identical to keywords currently defined prior to the
inclusion.

Any definition of an object-like macro described in this clause shall expand to code that is
fully protected by parentheses where necessary, so that it groups in an arbitrary
expression as if it were a single identifier.

Any declaration of a library function shall have external linkage.
A summary of the contents of the standard headers is given in annex B.

Forward references: diagnostics (7.2).

141) A header is not necessarily a source file, nor are& twed > delimited sequences in header names
necessarily valid source file names.

7.1.1 Library 7.1.2

WG14/N843 Committee Draft — August 3, 1998 151

7.1.3 Reserved identifiers

Each header declares or defines all identifiers listed in its associated subclause, and
optionally declares or defines identifiers listed in its associated future library directions
subclause and identifiers which are always reserved either for any use or for use as file
scope identifiers.

— All identifiers that begin with an underscore and either an uppercase letter or another
underscore are always reserved for any use.

— All identifiers that begin with an underscore are always reserved for use as identifiers
with file scope in both the ordinary and tag name spaces.

— Each macro name in any of the following subclauses (including the future library
directions) is reserved for use as specified if any of its associated headers is included;
unless explicitly stated otherwise (see 7.1.4).

— All identifiers with external linkage in any of the following subclauses (including the
future library directions) are always reserved for use as identifiers with external
linkage142)

— Each identifier with file scope listed in any of the following subclauses (including the
future library directions) is reserved for use as macro and as an identifier with file
scope in the same name space if any of its associated headers is included.

No other identifiers are reserved. If the program declares or defines an identifier in a
context in which it is reserved (other than as allowed by 7.1.4), or defines a reserved
identifier as a macro name, the behavior is undefined.

If the program removes (withundef) any macro definition of an identifier in the first
group listed above, the behavior is undefined.

7.1.4 Use of library functions

Each of the following statements applies unless explicitly stated otherwise in the detailed
descriptions that follow: If an argument to a function has an invalid value (such as a value
outside the domain of the function, or a pointer outside the address space of the program,
or a null pointer) or a type (after promotion) not expected by a function with variable
number of arguments, the behavior is undefined. If a function argument is described as
being an array, the pointer actually passed to the function shall have a value such that all
address computations and accesses to objects (that would be valid if the pointer did point
to the first element of such an array) are in fact valid. Any function declared in a header
may be additionally implemented as a function-like macro defined in the header, so if a
library function is declared explicitly when its header is included, one of the techniques
shown below can be used to ensure the declaration is not affected by such a macro. Any
macro definition of a function can be suppressed locally by enclosing the name of the
function in parentheses, because the name is then not followed by the left parenthesis that
indicates expansion of a macro function name. For the same syntactic reason, it is

142) The list of reserved identifiers with external linkage inclede® |, setimp , andva_end .

7.1.3 Library 7.1.4

152 Committee Draft — August 3, 1998 WG14/N843

permitted to take the address of a library function even if it is also defined as alfifacro.

The use of#fundef to remove anymacro definition will also ensure that an actual
function is referred to. Any invocation of a library function that is implemented as a
macro shall expand to code that evaluates each of its arguments exactly once, fully
protected by parentheses where necessary, so it is generally safe to use arbitrary
expressions as argumeftd) Likewise, those function-like macros described in the
following subclauses may be invoked in an expression anywhere a function with a
compatible return type could be call® All object-like macros listed as expanding to
integer constant expressions shall additionally be suitable for ué ipreprocessing
directives.

Provided that a library function can be declared without reference to any type defined in a
header, it is also permissible to declare the function and use it without including its
associated header.

There is a sequence point immediately before a library function returns.

The functions in the standard library are not guaranteed to be reentrant and may modify
objects with static storage duratitif)

EXAMPLE The functionatoi may be used in any of several ways:
— by use of its associated header (possibly generating a macro expansion)

#include <stdlib.h>
const char *str;
|

i = atoi(str);

143) This means that an implementation shall provide an actual function for each library function, even if it
also provides a macro for that function.

144) Such macros might not contain the sequence points that the corresponding function calls do.

145) Because external identifiers and some macro names beginning with an underscore are reserved,
implementations may provide special semantics for such names. For example, the identifier
_BUILTIN_abs could be used to indicate generation of in-line code foalisefunction. Thus, the
appropriate header could specify

#define abs(x) _BUILTIN_abs(x)
for a compiler whose code generator will accept it.

In this manner, a user desiring to guarantee that a given library function saioh &sll be a genuine
function may write

#undef abs

whether the implementation’s header provides a macro implementaticabsofor a built-in
implementation. The prototype for the function, which precedes and is hidden by any macro
definition, is thereby revealed also.

146) Thus, a signal handler cannot, in general, call standard library functions.

714 Library 714

WG14/N843

— by use of its associated header (assuredly generating a true function reference)

or

#include <stdlib.h>
#undef atoi

const char *str;
|

i = atoi(str);

#include <stdlib.h>
const char *str;
roo

i = (atoi)(str);

— by explicit declaration

7.1.4

extern int atoi(const char *);
const char *str;

o

i = atoi(str);

Committee Draft — August 3, 1998

Library

153

7.1.4

154 Committee Draft — August 3, 1998 WG14/N843

7.2 Diagnostics<assert.h>
The headexassert.h> defines thessert macro and refers to another macro,
NDEBUG

which is not defined by<assert.h> . If NDEBUGs defined as a macro name at the
point in the source file whereassert.h> is included, theassert macro is defined
simply as

#define assert(ignore) ((void)0)

Theassert macro is redefined according to the current stat¢DEBU&@ach time that
<assert.h> isincluded.

Theassert macro shall be implemented as a macro, not as an actual function. If the
macro definition is suppressed in order to access an actual function, the behavior is
undefined.

7.2.1 Program diagnostics
7.2.1.1 Theassert macro
Synopsis

#include <assert.h>
void assert(_Bool expression);

Description

The assert macro puts diagnostic tests into programs. When it is executed, if
expression is false (that is, compares equal to 0), #esert macro writes
information about the particular call that failed (including the text of the argument, the
name of the source file, the source line number, and the name of the enclosing function
— the latter are respectively the values of the preprocessing mackiEE_ _ and
__LINE_ _ and of the identifier__func_) on the standard error file in an
implementation-defined format? It then calls thebort function.

Returns
Theassert macro returns no value.

Forward references: theabort function (7.20.4.1).

147) The message written might be of the form:

Assertion failed: expressionfunction abg file xyzline nnn.

7.2 Library 7.21.1

WG14/N843 Committee Draft — August 3, 1998 155

7.3 Complex arithmetic<complex.h>

7.3.1 Introduction

The headexcomplex.h> defines macros and declares functions that support complex
arithmetic1*® Each synopsis specifies a family of functions consisting of a principal
function with one or mordouble complex parameters anddouble complex or
double return value; and other functions with same name but fwit#nd | suffixes
which are corresponding functions wittoat and long double parameters and
return values.

The macro
complex

expands to Complex ; the macro
Complex|

expands to a constant expression of typest float _Complex , with the value of
the imaginary unit*®

The macros
imaginary
and
Imaginary|

are defined if and only if the implementation supports imaginary 3&#; defined,
they expand to Imaginary and a constant expression of typenst float
_Imaginary with the value of the imaginary unit.

The macro
I

expands to either Imaginary_| or _Complex_| . If _Imaginary_| IS not
defined,l shall expand to Complex_| .

Notwithstanding the provisions of 7.1.3, a program is permitted to undefine and perhaps
then redefine the macroemplex , imaginary , andl .

Forward references: IEC 60559-compatible complex arithmetic (annex G).

148) See “future library directions” (7.26.1).

149) The imaginary unit is a numbgsuch thai® = — 1.

150) A specification for imaginary types is in informative annex G.

7.3 Library 7.3.1

156 Committee Draft — August 3, 1998 WG14/N843

7.3.2 Conventions

Values are interpreted as radians, not degrees. An implementation reaysetbut is
not required to.

7.3.3 Branch cuts

Some of the functions below have branch cuts, across which the function is
discontinuous. For implementations with a signed zero (including all IEC 60559
implementations) that follow the specification of annex G, the sign of zero distinguishes
one side of a cut from another so the function is continuous (except for format
limitations) as the cut is approached from either side. For example, for the square root
function, which has a branch cut along the negative real axis, the top of the cut, with
imaginary part +0, maps to the positive imaginary axis, and the bottom of the cut, with
imaginary part —0, maps to the negative imaginary axis.

Implementations that do not support a signed zero (see annex F) cannot distinguish the
sides of branch cuts. These implementations shall map a cut so the function is continuous
as the cut is approached coming around the finite endpoint of the cut in a counter
clockwise direction. (Branch cuts for the functions specified here have just one finite
endpoint.) For example, for the square root function, coming counter clockwise around
the finite endpoint of the cut along the negative real axis approaches the cut from above,
so the cut maps to the positive imaginary axis.

7.3.4 TheCX_LIMITED_RANGEpragma
Synopsis

#include <complex.h>
#pragma STDC CX_LIMITED_RANGE on-off-switch

Description

The usual mathematical formula for complex multiply, divide, and absolute value are
problematic because of their treatment of infinities and because of undue overflow and
underflow. The CX_LIMITED_RANGE pragma can be used to inform the
implementation that (where the state ag) the usual mathematical formulas are
acceptablé®?) The pragma can occur either outside external declarations or preceding all
explicit declarations and statements inside a compound statement. When outside external
declarations, the pragma takes effect from its occurrence until another
CX_LIMITED_RANGEpragma is encountered, or until the end of the translation unit.
When inside a compound statement, the pragma takes effect from its occurrence until

151) The purpose of the pragma is to allow the implementation to use the formulas:
(X +iy) X (u+iv) = (Xu—yv) +i(yu+ xv)
(x+1iy) / (u+iv) = [(xu+ yv) +i(yu—xv)] / (U* +Vv?)
X +iy| = VX2 +y?

where the programmer can determine they are safe.

7.3.2 Library 7.3.4

WG14/N843 Committee Draft — August 3, 1998 157

another CX_LIMITED_RANGE pragma is encountered (within a nested compound
statement), or until the end of the compound statement; at the end of a compound
statement the state for the pragma is restored to its condition just before the compound
statement. If this pragma is used in any other context, the behavior is undefined. The
default state for the pragmaaff .

7.3.5 Trigonometric functions
7.3.5.1 Thecacos functions
Synopsis

#include <complex.h>

double complex cacos(double complex z);

float complex cacosf(float complex z);

long double complex cacosl(long double complex z);

Description

Thecacos functions compute the complex arc cosine pfvith branch cuts outside the
interval [-1, 1] along the real axis.

Returns

The cacos functions return the complex arc cosine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the intervdld@ng the
real axis.

7.3.5.2 Thecasin functions
Synopsis

#include <complex.h>

double complex casin(double complex z);

float complex casinf(float complex z);

long double complex casinl(long double complex z);

Description

Thecasin functions compute the complex arc sinezofwith branch cuts outside the
interval [-1, 1] along the real axis.

Returns

The casin functions return the complex arc sine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the intewal [#2] along
the real axis.

7.3.4 Library 7.3.5.2

158 Committee Draft — August 3, 1998 WG14/N843

7.3.5.3 Thecatan functions
Synopsis

#include <complex.h>

double complex catan(double complex z);

float complex catanf(float complex z);

long double complex catanl(long double complex z);

Description

Thecatan functions compute the complex arc tangert ofvith branch cuts outside the
interval [H, i] along the imaginary axis.

Returns

The catan functions return the complex arc tangent value, in the range of a strip
mathematically unbounded along the imaginary axis and in the intewal #2] along
the real axis.

7.3.5.4 Theccos functions
Synopsis

#include <complex.h>

double complex ccos(double complex z);

float complex ccosf(float complex z);

long double complex ccosl(long double complex z);

Description

Theccos function computes the complex cosinezof
Returns

Theccos functions return the complex cosine value.
7.3.5.5 Thecsin functions

Synopsis

#include <complex.h>

double complex csin(double complex z);

float complex csinf(float complex z);

long double complex csinl(long double complex z);

Description
Thecsin functions compute the complex sinezof
Returns

Thecsin functions return the complex sine value.

7.3.5.2 Library 7.3.5.5

WG14/N843 Committee Draft — August 3, 1998

7.3.5.6 Thectan functions
Synopsis

#include <complex.h>

double complex ctan(double complex z);

float complex ctanf(float complex z);

long double complex ctanl(long double complex z);

Description

Thectan functions compute the complex tangenizof
Returns

Thectan functions return the complex tangent value.

7.3.6 Hyperbolic functions
7.3.6.1 Thecacosh functions
Synopsis

#include <complex.h>

double complex cacosh(double complex z);

float complex cacoshf(float complex z);

long double complex cacoshl(long double complex z);

Description

159

Thecacosh functions compute the complex arc hyperbolic cosine,akith a branch

cut at values less than 1 along the real axis.

Returns

Thecacosh functions return the complex arc hyperbolic cosine value, in the range of a
half-strip of non-negative values along the real axis and in the inteiival f#-along the

imaginary axis.

7.3.55 Library

7.3.6.1

160 Committee Draft — August 3, 1998 WG14/N843

7.3.6.2 Thecasinh functions
Synopsis

#include <complex.h>

double complex casinh(double complex z);

float complex casinhf(float complex z);

long double complex casinhl(long double complex z);

Description

Thecasinh functions compute the complex arc hyperbolic sine ,ofvith branch cuts
outside the interval [i+-i] along the imaginary axis.

Returns

The casinh functions return the complex arc hyperbolic sine value, in the range of a
strip mathematically unbounded along the real axis and in the intervé,[+72] along
the imaginary axis.

7.3.6.3 Thecatanh functions
Synopsis

#include <complex.h>

double complex catanh(double complex z);

float complex catanhf(float complex z);

long double complex catanhl(long double complex z);

Description

The catanh functions compute the complex arc hyperbolic tangert,ofith branch
cuts outside the interval [-1, 1] along the real axis.

Returns

Thecatanh functions return the complex arc hyperbolic tangent value, in the range of a
strip mathematically unbounded along the real axis and in the interwé,[+72] along
the imaginary axis.

7.3.6.1 Library 7.3.6.3

WG14/N843 Committee Draft — August 3, 1998 161

7.3.6.4 Theccosh functions
Synopsis

#include <complex.h>

double complex ccosh(double complex z);

float complex ccoshf(float complex z);

long double complex ccoshl(long double complex z);

Description

Theccosh functions compute the complex hyperbolic cosine .of
Returns

Theccosh functions return the complex hyperbolic cosine value.
7.3.6.5 Thecsinh functions

Synopsis

#include <complex.h>

double complex csinh(double complex z);

float complex csinhf(float complex z);

long double complex csinhl(long double complex z);

Description

Thecsinh functions compute the complex hyperbolic sine of
Returns

Thecsinh functions return the complex hyperbolic sine value.
7.3.6.6 Thectanh functions

Synopsis

#include <complex.h>

double complex ctanh(double complex z);

float complex ctanhf(float complex z);

long double complex ctanhl(long double complex z);

Description
Thectanh functions compute the complex hyperbolic tanger.of
Returns

Thectanh functions return the complex hyperbolic tangent value.

7.3.6.3 Library 7.3.6.6

162 Committee Draft — August 3, 1998 WG14/N843

7.3.7 Exponential and logarithmic functions
7.3.7.1 Thecexp functions
Synopsis

#include <complex.h>

double complex cexp(double complex z);

float complex cexpf(float complex z);

long double complex cexpl(long double complex z);

Description

Thecexp functions compute the complex basexponential of.
Returns

Thecexp functions return the complex bas@xponential value.
7.3.7.2 Theclog functions

Synopsis

#include <complex.h>

double complex clog(double complex z);

float complex clogf(float complex z);

long double complex clogl(long double complex z);

Description

Theclog functions compute the complex natural (baségarithm ofz, with a branch
cut along the negative real axis.

Returns

Theclog functions return the complex natural logarithm value, in the range of a strip
mathematically unbounded along the real axis and in the intervalif# along the
imaginary axis.

7.3.8 Power and absolute-value functions

7.3.7 Library 7.3.8

WG14/N843 Committee Draft — August 3, 1998 163

7.3.8.1 Thecabs functions
Synopsis

#include <complex.h>

double cabs(double complex z);

float cabsf(float complex z);

long double cabsl(long double complex z);

Description

Thecabs functions compute the complex absolute value (also called norm, modulus, or
magnitude) ok.

Returns

Thecabs functions return the complex absolute value.
7.3.8.2 Thecpow functions

Synopsis

#include <complex.h>
double complex cpow(double complex x, double complex y);
float complex cpowf(float complex x, float complex y);
long double complex cpowl(long double complex x,
long double complex y);

Description

Thecpow functions compute the complex power functioh with a branch cut for the
first parameter along the negative real axis.

Returns

Thecpow functions return the complex power function value.
7.3.8.3 Thecsgrt functions

Synopsis

#include <complex.h>

double complex csqrt(double complex z);

float complex csqrtf(float complex z);

long double complex csqrtl(long double complex z);

Description

Thecsqrt functions compute the complex square root pivith a branch cut along the
negative real axis.

Returns

Thecsqrt functions return the complex square root value, in the range of the right half-
plane (including the imaginary axis).

7.3.8 Library 7.3.8.3

164 Committee Draft — August 3, 1998 WG14/N843

7.3.9 Manipulation functions
7.3.9.1 Thecarg functions
Synopsis

#include <complex.h>

double carg(double complex z);

float cargf(float complex z);

long double cargl(long double complex z);

Description

Thecarg functions compute the argument (also called phase angte)vath a branch
cut along the negative real axis.

Returns

Thecarg functions return the value of the argument in the ranggeri-
7.3.9.2 Thecimag functions

Synopsis

#include <complex.h>

double cimag(double complex z);

float cimagf(float complex z);

long double cimagl(long double complex z);

Description

Thecimag functions compute the imaginary partzot>?

Returns

Thecimag functions return the imaginary part value (as a real).

152) For a variable of complex typez == creal(z) + cimag(z)*

7.3.9 Library 7.3.9.2

WG14/N843 Committee Draft — August 3, 1998 165

7.3.9.3 Thecon] functions
Synopsis

#include <complex.h>

double complex conj(double complex z);

float complex conjf(float complex z);

long double complex conjl(long double complex z);

Description

Theconj functions compute the complex conjugatezofby reversing the sign of its
imaginary part.

Returns

Theconj functions return the complex conjugate value.
7.3.9.4 Thecproj functions

Synopsis

#include <complex.h>

double complex cproj(double complex z);

float complex cprojf(float complex z);

long double complex cprojl(long double complex z);

Description

Thecproj functions compute a projection nfonto the Riemann spherz:projects to

z except that all complex infinities (even those with one infinite part and one NaN part)
project to positive infinity on the real axis. afhas an infinite part, thecproj(z) is
equivalent to

INFINITY + | * copysign(0.0, cimag(z))
Returns
Thecproj functions return the value of the projection onto the Riemann sphere.

7.3.9.2 Library 7.39.4

166 Committee Draft — August 3, 1998

7.3.9.5 Thecreal functions
Synopsis

#include <complex.h>

double creal(double complex z);

float crealf(float complex z);

long double creall(long double complex z);

Description
Thecreal functions compute the real partaf>3)
Returns

Thecreal functions return the real part value.

153) For a variable of complex typez == creal(z) + cimag(z)*

7.3.9.4 Library

WG14/N843

7.3.9.5

WG14/N843 Committee Draft — August 3, 1998 167

7.4 Character handling<ctype.h>

The headerctype.h> declares several functions useful for testing and mapping
characterd®® In all cases the argument is am , the value of which shall be
representable as amsigned char or shall equal the value of the ma&OF If the
argument has any other value, the behavior is undefined.

The behavior of these functions is affected by the current locale. Those functions that
have locale-specific aspects only when not in'@fe locale are noted below.

The termprinting characterrefers to a member of a locale-specific set of characters, each
of which occupies one printing position on a display device; the ¢emtrol character
refers to a member of a locale-specific set of characters that are not printing
characters$®®

Forward references: EOF(7.19.1), localization (7.11).
7.4.1 Character testing functions

The functions in this subclause return nonzero (true) if and only if the value of the
argument conforms to that in the description of the function.

7.4.1.1 Thasalnum function
Synopsis

#include <ctype.h>
int isalnum(int c);

Description
Theisalnum function tests for any character for whicialpha orisdigit is true.

154) See “future library directions” (7.26.2).

155) In an implementation that uses the seven-bit US ASCII character set, the printing characters are those
whose values lie from 0x20 (space) through Ox7E (tilde); the control characters are those whose
values lie from 0 (NUL) through Ox1F (US), and the character Ox7F (DEL).

7.4 Library 7411

168 Committee Draft — August 3, 1998 WG14/N843

7.4.1.2 Thesalpha function
Synopsis

#include <ctype.h>
int isalpha(int c);

Description

Theisalpha function tests for any character for whishipper orislower is true,

or any character that is one of a locale-specific set of alphabetic characters for which
none ofiscntrl , isdigit , ispunct , orisspace is truel®® In the"C" locale,
isalpha returns true only for the characters for whishpper orislower is true.

7.4.1.3 Thascntrl function
Synopsis

#include <ctype.h>
int iscntrl(int c);

Description
Theiscntrl function tests for any control character.
7.4.1.4 Thesdigit function
Synopsis
#include <ctype.h>
int isdigit(int c);
Description
Theisdigit function tests for any decimal-digit character (as defined in 5.2.1).

156) The functiondslower andisupper test true or false separately for each of these additional
characters; all four combinations are possible.

74.1.1 Library 7.4.1.4

WG14/N843 Committee Draft — August 3, 1998 169

7.4.1.5 Theasgraph function
Synopsis

#include <ctype.h>
int isgraph(int c);

Description

Theisgraph function tests for any printing character except space).
7.4.1.6 Theslower function

Synopsis

#include <ctype.h>
int islower(int c);

Description

Theislower function tests for any character that is a lowercase letter or is one of a
locale-specific set of characters for which nonésoftrl | isdigit , ispunct , or
isspace is true. In the"C" locale,islower returns true only for the characters
defined as lowercase letters (as defined in 5.2.1).

7.4.1.7 Thesprint function
Synopsis

#include <ctype.h>
int isprint(int c);

Description

Theisprint function tests for any printing character including spéace §.
7.4.1.8 Theaspunct function

Synopsis

#include <ctype.h>
int ispunct(int c);

Description

Theispunct function tests for any printing character that is one of a locale-specific set
of punctuation characters for which neitisspace norisalnum is true.

7.4.1.4 Library 7.4.1.8

170 Committee Draft — August 3, 1998 WG14/N843

7.4.1.9 Theasspace function
Synopsis

#include <ctype.h>
int isspace(int c);

Description

Theisspace function tests for any character that is a standard white-space character or
is one of a locale-specific set of characters for wisalnum is false. The standard
white-space characters are the following: spdcé), form feed &f), new-line

(\n’), carriage return’\f’), horizontal tab’{t'), and vertical tab’{"). In the

"C" locale,isspace returns true only for the standard white-space characters.

7.4.1.10 Thdsupper function
Synopsis

#include <ctype.h>
int isupper(int c);

Description

Theisupper function tests for any character that is an uppercase letter or is one of a
locale-specific set of characters for which nongsoftrl | isdigit , ispunct , or
isspace is true. In the"C" locale,isupper returns true only for the characters
defined as uppercase letters (as defined in 5.2.1).

7.4.1.11 Thdsxdigit function
Synopsis

#include <ctype.h>
int isxdigit(int c);

Description
Theisxdigit function tests for any hexadecimal-digit character (as defined in 6.4.4.2).

7.4.2 Character case mapping functions

7.4.1.8 Library 7.4.2

WG14/N843 Committee Draft — August 3, 1998 171

7.4.2.1 Thetolower function
Synopsis

#include <ctype.h>
int tolower(int c);

Description
Thetolower function converts an uppercase letter to a corresponding lowercase letter.
Returns

If the argument is a character for whiglupper is true and there are one or more
corresponding characters, as specified by the current locale, for isloisler is true,
thetolower function returns one of the corresponding characters (always the same one
for any given locale); otherwise, the argument is returned unchanged.

7.4.2.2 Thetoupper function
Synopsis

#include <ctype.h>
int toupper(int c);

Description
Thetoupper function converts a lowercase letter to a corresponding uppercase letter.
Returns

If the argument is a character for whishower is true and there are one or more
corresponding characters, as specified by the current locale, for isnogier is true,
thetoupper function returns one of the corresponding characters (always the same one
for any given locale); otherwise, the argument is returned unchanged.

7.4.2 Library 7.4.2.2

172 Committee Draft — August 3, 1998 WG14/N843

7.5 Errors <errno.h>

The headekerrno.h> defines several macros, all relating to the reporting of error
conditions.

The macros are

EDOM
EILSEQ
ERANGE

which expand to integer constant expressions with ityjpe distinct positive values, and
which are suitable for use #if preprocessing directives; and

errno

which expands to a modifiable Ivald® that has typént , the value of which is set to a
positive error number by several library functions. It is unspecified whethes is a

macro or an identifier declared with external linkage. If a macro definition is suppressed
in order to access an actual object, or a program defines an identifier with the name
errno , the behavior is undefined.

The value oferrno is zero at program startup, but is never set to zero by any library
function!®® The value oferrno may be set to nonzero by a library function call
whether or not there is an error, provided the userofo is not documented in the
description of the function in this International Standard.

Additional macro definitions, beginning with and a digit orE and an uppercase
letter!®® may also be specified by the implementation.

157) The macrerrmo need not be the identifier of an object. It might expand to a modifiable Ivalue
resulting from a function call (for examplerrmo()).

158) Thus, a program that usssno for error checking should set it to zero before a library function call,
then inspect it before a subsequent library function call. Of course, a library function can save the
value oferrno on entry and then set it to zero, as long as the original value is restereabif 's
value is still zero just before the return.

159) See “future library directions” (7.26.3).

7.5 Library 7.5

WG14/N843 Committee Draft — August 3, 1998 173

7.6 Floating-point environment<fenv.h>

The headexfenv.h> declares two types and several macros and functions to provide
access to the floating-point environment. THeating-point environmentrefers
collectively to any floating-point status flags and control modes supported by the
implementation:*? A floating-point status flags a system variable whose value is set as

a side effect of floating-point arithmetic to provide auxiliary information floating-

point control modas a system variable whose value may be set by the user to affect the
subsequent behavior of floating-point arithmetic.

Certain programming conventions support the intended model of use for the floating-
point environment?)

— a function call does not alter its caller's modes, clear its caller’s flags, nor depend on
the state of its caller’s flags unless the function is so documented;

— a function call is assumed to require default modes, unless its documentation
promises otherwise or unless the function is known not to use floating-point;

— a function call is assumed to have the potential for raising floating-point exceptions,
unless its documentation promises otherwise, or unless the function is known not to
use floating-point.

The type

fenv_t
represents the entire floating-point environment.
The type

fexcept_t

represents the floating-point exception flags collectively, including any status the
implementation associates with the flags.

Each of the macros

FE_DIVBYZERO
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_UNDERFLOW

is defined if and only if the implementation supports the exception by means of the
functions in 7.6.2. Additional floating-point exceptions, with macro definitions beginning

160) This header is designed to support the exception status flags and directed-rounding control modes
required by IEC 60559, and other similar floating-point state information. Also it is designed to
facilitate code portability among all systems.

161) With these conventions, a programmer can safely assume default modes (or be unaware of them). The
responsibilities associated with accessing the floating-point environment fall on the programmer or
program that does so explicitly.

7.6 Library 7.6

174 Committee Draft — August 3, 1998 WG14/N843

with FE_ and an uppercase letter, may also be specified by the implementation. The
defined macros expand to integer constant expressions with values such that bitwise ORs
of all combinations of the macros result in distinct values.

The macro

FE_ALL_EXCEPT
is simply the bitwise OR of all exception macros defined by the implementation.
Each of the macros

FE_DOWNWARD
FE_TONEAREST
FE_TOWARDZERO
FE_UPWARD

is defined if and only if the implementation supports getting and setting the represented
rounding direction by means of thiegetround and fesetround functions.
Additional rounding directions, with macro definitions beginning Wi and an
uppercase letter, may also be specified by the implementation. The defined macros
expand to integer constant expressions whose values are distinct nonnegativ@?)alues.

The macro
FE DFL_ENV

represents the default floating-point environment — the one installed at program startup
— and has typeointer to const-qualifiedenv_t . It can be used as an argument to
<fenv.h> functions that manage the floating-point environment.

Additional macro definitions, beginning witRE_ and having typepointer to const-
qualifiedfenv_t , may also be specified by the implementation.

162) Even though the rounding direction macros may expand to constants corresponding to the values of
FLT_ROUNDShey are not required to do so.

7.6 Library 7.6

WG14/N843 Committee Draft — August 3, 1998 175

7.6.1 TheFENV_ACCES$ragma
Synopsis

#include <fenv.h>
#pragma STDC FENV_ACCESS on-off-switch

Description

The FENV_ACCESSragma provides a means to inform the implementation when a
program might access the floating-point environment to test flags or run under non-
default moded®®) The pragma shall occur either outside external declarations or
preceding all explicit declarations and statements inside a compound statement. When
outside external declarations, the pragma takes effect from its occurrence until another
FENV_ACCESS$ragma is encountered, or until the end of the translation unit. When
inside a compound statement, the pragma takes effect from its occurrence until another
FENV_ACCESS$ragma is encountered (within a nested compound statement), or until
the end of the compound statement; at the end of a compound statement the state for the
pragma is restored to its condition just before the compound statement. If this pragma is
used in any other context, the behavior is undefined. If part of a program tests flags or
runs under non-default mode settings, but was translated with the state for the
FENV_ACCES$ragmaoff, then the behavior is undefined. The default state(off)

for the pragma is implementation-defined.

EXAMPLE

#include <fenv.h>

void f(double x)

{
#pragma STDC FENV_ACCESS ON
void g(double);
void h(double);
*
g(x +1);
h(x + 1);
*

}

If the functiong might depend on status flags set as a side effect of the fitstl, or if the seconck +
1 might depend on control modes set as a side effect of the call to fuggttben the program shall
contain an appropriately placed invocatiorpfagma STDC FENV_ACCESS ON.*6%

163) The purpose of thEENV_ACCESS$ragma is to allow certain optimizations, for examglebal
common subexpression eliminatimode motion and constant foldingthat could subvert flag tests
and mode changes. In general, if the stateEV_ACCESSs off then the translator can assume that
default modes are in effect and the flags are not tested.

164) The side effects impose a temporal ordering that requires two evaluations of . On the other
hand, without théfpragma STDC FENV_ACCESS ON pragma, and assuming the default state is
off, just one evaluation of + 1 would suffice.

7.6 Library 7.6.1

176 Committee Draft — August 3, 1998 WG14/N843

7.6.2 Exceptions

The following functions provide access to the exception fi8)sThe int input
argument for the functions represents a subset of floating-point exceptions, and can be
zero or the bitwise OR of one or more exception macros, for ex&aBpl@VERFLOW |
FE_INEXACT. For other argument values the behavior of these functions is undefined.

7.6.2.1 Thefeclearexcept function
Synopsis

#include <fenv.h>
void feclearexcept(int excepts);

Description

The feclearexcept function clears the supported exceptions represented by its
argument.

7.6.2.2 Thefegetexceptflag function
Synopsis

#include <fenv.h>
void fegetexceptflag(fexcept_t *flagp,
int excepts);

Description

The fegetexceptflag function stores an implementation-defined representation of
the exception flags indicated by the argunmexepts in the object pointed to by the
argumentlagp

165) The functionsfetestexcept , feraiseexcept , and feclearexcept support the basic
abstraction of flags that are either set or clear. An implementation may endow exception flags with
more information — for example, the address of the code which first raised the exception; the
functionsfegetexceptflag andfesetexceptflag deal with the full content of flags.

7.6.2 Library 7.6.2.2

WG14/N843 Committee Draft — August 3, 1998 177

7.6.2.3 Theferaiseexcept function
Synopsis

#include <fenv.h>
void feraiseexcept(int excepts);

Description

The feraiseexcept function raises the supported exceptions represented by its
argument®® The order in which these exceptions are raised is unspecified, except as
stated in F.7.6. Whether ttHieraiseexcept function additionally raises th@exact
exception whenever it raises tlowwerflow or underflow exception is implementation-
defined.

7.6.2.4 Thefesetexceptflag function
Synopsis

#include <fenv.h>
void fesetexceptflag(const fexcept_t *flagp,
int excepts);

Description

The fesetexceptflag function sets the complete status for those exception flags
indicated by the argumerdgxcepts , according to the representation in the object
pointed to byflagp . The value offlagp shall have been set by a previous call to
fegetexceptflag whose second argument represented at least those exceptions
represented by the argumexicepts . This function does not raise exceptions, but only
sets the state of the flags.

166) The effect is intended to be similar to that of exceptions raised by arithmetic operations. Hence,
enabled traps for exceptions raised by this function are taken. The specification in F.7.6 is in the same
spirit.

7.6.2.2 Library 7.6.2.4

178 Committee Draft — August 3, 1998 WG14/N843

7.6.2.5 Thefetestexcept function
Synopsis

#include <fenv.h>
int fetestexcept(int excepts);

Description

Thefetestexcept function determines which of a specified subset of the exception
flags are currently set. Thexcepts argument specifies the exception flags to be
queried!®”

Returns

The fetestexcept function returns the value of the bitwise OR of the exception
macros corresponding to the currently set exceptions includedapts

EXAMPLE Callf if invalidis set, themy if overflowis set:

#include <fenv.h>

*

{
#pragma STDC FENV_ACCESS ON
int set_excepts;
/I maybe raise exceptions
set_excepts =

fetestexcept(FE_INVALID | FE_OVERFLOW);

if (set_excepts & FE_INVALID) f();
if (set_excepts & FE_OVERFLOW) g();
*

7.6.3 Rounding

Thefegetround andfesetround functions provide control of rounding direction
modes.

167) This mechanism allows testing several exceptions with just one function call.

7.6.2.4 Library 7.6.3

WG14/N843 Committee Draft — August 3, 1998 179

7.6.3.1 Thefegetround function
Synopsis

#include <fenv.h>
int fegetround(void);

Description
Thefegetround function gets the current rounding direction.
Returns

The fegetround function returns the value of the rounding direction macro
representing the current rounding direction.

7.6.3.2 Thefesetround function
Synopsis

#include <fenv.h>
int fesetround(int round);

Description

The fesetround function establishes the rounding direction represented by its
argumentound . If the argument is not equal to the value of a rounding direction macro,
the rounding direction is not changed.

Returns

Thefesetround function returns a zero value if and only if the argument is equal to a
rounding direction macro (that is, if and only if the requested rounding direction can be
established).

EXAMPLE 1 Save, set, and restore the rounding direction. Report an error and abort if setting the
rounding direction fails.

#include <fenv.h>
#include <assert.h>
%
{
#pragma STDC FENV_ACCESS ON
int save_round;
int setround_ok;
save_round = fegetround();
setround_ok = fesetround(FE_UPWARD);
assert(setround_ok);

%
fesetround(save_round);
%

7.6.3 Library 7.6.3.2

180 Committee Draft — August 3, 1998 WG14/N843

7.6.4 Environment

The functions in this section manage the floating-point environment — status flags and
control modes — as one entity.

7.6.4.1 Thefegetenv function
Synopsis

#include <fenv.h>
void fegetenv(fenv_t *envp);

Description

The fegetenv function stores the current floating-point environment in the object
pointed to byenvp .

7.6.4.2 Thefeholdexcept function
Synopsis

#include <fenv.h>
int feholdexcept(fenv_t *envp);

Description

Thefeholdexcept function saves the current floating-point environment in the object
pointed to byenvp, clears the exception flags, and then instah®mstop(continue on
exceptions) mode, if available, for all exceptidff3.

Returns

The feholdexcept function returns zero if and only if non-stop exception handling
was successfully installed.

168) IEC 60559 systems have a default non-stop mode, and typically at least one other mode for trap
handling or aborting; if the system provides only the non-stop mode then installing it is trivial. For
such systems, thieholdexcept function can be used in conjunction with teeipdateenv
function to write routines that hide spurious exceptions from their callers.

7.6.4 Library 7.6.4.2

WG14/N843 Committee Draft — August 3, 1998 181

7.6.4.3 Thefesetenv function
Synopsis

#include <fenv.h>
void fesetenv(const fenv_t *envp);

Description

Thefesetenv function establishes the floating-point environment represented by the
object pointed to bgnvp . The argumenenvp shall point to an object set by a call to
fegetenv or feholdexcept , or equal the macroFE_DFL _ENV or an
implementation-defined environment macro. Note feaetenv merely installs the

state of the exception flags represented through its argument, and does not raise these
exceptions.

7.6.4.4 Thefeupdateenv function
Synopsis

#include <fenv.h>
void feupdateenv(const fenv_t *envp);

Description

The feupdateenv ~ function saves the currently raised exceptions in its automatic
storage, installs the floating-point environment represented by the object pointed to by
envp, and then raises the saved exceptions. The arguenept shall point to an object

set by a call tdeholdexcept orfegetenv , or equal the macrBE_DFL_ENVor an
implementation-defined environment macro.

EXAMPLE 1 Hide spurious underflow exceptions:

#include <fenv.h>

double f(double x)

{
#pragma STDC FENV_ACCESS ON
double result;
fenv_t save_env;
feholdexcept(&save_env);
/[compute result
if (/* test spurious underflow/)

feclearexcept(FE_UNDERFLOW);

feupdateenv(&save_env);
return result;

7.6.4.2 Library 7.6.4.4

182 Committee Draft — August 3, 1998 WG14/N843

7.7 Characteristics of floating types<float.h>

The headexfloat.h> defines several macros that expand to various limits and
parameters of the standard floating-point types.

The macros, their meanings, and the constraints (or restrictions) on their values are listed
in5.2.4.2.2.

7.7 Library 7.7

WG14/N843 Committee Draft — August 3, 1998 183

7.8 Format conversion of integer typesinttypes.h>

The headekinttypes.h> includes the headesstdint.h> and extends it with
additional facilities provided by hosted implementations.

It declares four functions for converting numeric character strings to greatest-width
integers and, for each type declaredckstidint.h> , it defines corresponding macros
for conversion specifiers for use with the formatted input/output functfShs.

Forward references: integer typesstdint.h> (7.18).

7.8.1 Macros for format specifiers

Each of the following object-like macrd® expands to a character string literal
containing a conversion specifier, possibly modified by a length modifier, suitable for use
within the format argument of a formatted input/output function when converting the
corresponding integer type. These macro names have the general forh (@haracter
string literals for thdprintf family) or SCN(character string literals for tifecanf
family),1? followed by the conversion specifier, followed by a name corresponding to a
similar type name in 7.18.1. For exampRRIJFAST32 can be used in a format string

to print the value of an integer of typg_fast32_t

Thefprintf macros for signed integers are:

PRId8 PRIA16 PRId32 PRId64
PRIJLEASTS PRIJLEAST16 PRIJLEAST32 PRIJLEAST64
PRIDFASTS PRIDFAST16 PRIDFAST32 PRIDFAST64
PRIDMAX PRIAPTR
PRIi8 PRIi16 PRIi32 PRIi64
PRIILEASTS PRIILEAST16 PRIILEAST32 PRIILEAST64
PRIIFASTS8 PRIIFAST16 PRIIFAST32 PRIIFAST64
PRIIMAX PRIIPTR

Thefprintf macros for unsigned integers are:
PRIo8 PRI016 PRI032 PRIo64
PRIOLEASTS8 PRIOLEAST16 PRIOLEAST32 PRIOLEAST64
PRIOFASTS PRIOFAST16 PRIOFAST32 PRIOFAST64
PRIOMAX PRIOPTR

169) See “future library directions” (7.26.4).

170) C++ implementations should define these macros only wh&iDC_FORMAT_MACR®S]efined
before<inttypes.h> is included.

171) Separate macros are given for use ¥pititf andfscanf functions because, in the general case,
different format specifiers may be required forintf andfscanf , even when the type is the
same.

7.8 Library 7.8.1

184 Committee Draft — August 3, 1998 WG14/N843
PRIu8 PRIul6 PRIu32 PRIu64
PRIULEASTS8 PRIULEAST16 PRIULEAST32 PRIULEAST64
PRIUFASTS PRIUFAST16 PRIUFAST32 PRIUFAST64
PRIUMAX PRIUPTR
PRIx8 PRIx16 PRIx32 PRIx64
PRIXLEASTS PRIXLEAST16 PRIXLEAST32 PRIXLEAST64
PRIXFAST8 PRIXFAST16 PRIXFAST32 PRIXFAST64
PRIXMAX PRIXPTR
PRIX8 PRIX16 PRIX32 PRIX64
PRIXLEASTS PRIXLEAST16 PRIXLEAST32 PRIXLEAST64
PRIXFASTS PRIXFAST16 PRIXFAST32 PRIXFAST64
PRIXMAX PRIXPTR

4 Thefscanf macros for signed integers are:
SCNd8 SCNd16 SCNd32 SCNd64
SCNdLEASTS SCNALEAST16 SCNALEAST32 SCNALEAST64
SCNdFASTS SCNdFAST16 SCNdFAST32 SCNdJFAST64
SCNdMAX SCNdPTR
SCNi8 SCNil6 SCNi32 SCNi64
SCNILEASTS SCNILEAST16 SCNILEAST32 SCNILEAST64
SCNIFASTS SCNIFAST16 SCNIFAST32 SCNiFAST64
SCNIMAX SCNIPTR

5 Thefscanf macros for unsigned integers are:
SCNo8 SCNo16 SCNo032 SCNo64
SCNOLEASTS SCNOLEAST16 SCNOLEAST32 SCNOLEAST64
SCNOFASTS8 SCNOFAST16 SCNOFAST32 SCNOFAST64
SCNoMAX SCNoPTR
SCNu8 SCNul6 SCNu32 SCNu64
SCNULEASTS SCNULEAST16 SCNULEAST32 SCNULEAST64
SCNuFASTS8 SCNUFAST16 SCNUFAST32 SCNuUFAST64
SCNuMAX SCNuUPTR
SCNx8 SCNx16 SCNx32 SCNx64
SCNXLEASTS SCNXLEAST16 SCNXLEAST32 SCNXLEAST64
SCNxFAST8 SCNxFAST16 SCNXFAST32 SCNxFAST64
SCNxMAX SCNxPTR

6 Because the default argument promotions do not affect pointer parameters, there might
not exist suitabléscanf format specifiers for some of the types defined in this header.
Consequently, as a special exception to the requirement that the implementation define all
macros associated with each type defined by this header, in such a case the problematic
fscanf ~macros may be left undefined.

7.8.1 Library 7.8.1

WG14/N843 Committee Draft — August 3, 1998 185

7 EXAMPLE

#include <inttypes.h>
#include <wchar.h>
int main(void)

{
uintmax_t i = UINTMAX_MAX; I this type always exists

wprintf(L"The largest integer value is %020"
PRIXMAX "\n", i);
return O;

7.8.2 Conversion functions for greatest-width integer types
7.8.2.1 Thestrtoimax andstrtoumax functions
Synopsis

1 #include <inttypes.h>
intmax_t strtoimax(const char * restrict nptr,
char ** restrict endptr, int base);
uintmax_t strtoumax(const char * restrict nptr,
char ** restrict endptr, int base);

Description
2 Thestrtoimax andstrtoumax functions are equivalent to tisértol , strtoll ,
strtoul , and strtoull functions, except that the initial portion of the string is

converted tontmax_t anduintmax_t representation, respectively.
Returns

3 Thestrtoimax andstrtoumax functions return the converted value, if any. If no
conversion could be performed, zero is returned. If the correct value is outside the range
of representable valueB\TMAX_ MAXINTMAX_MIN, or UINTMAX_MAXs returned
(according to the return type and sign of the value, if any), and the value of the macro
ERANGHEs stored irerrno .

7.8.2.2 Thewcstoimax andwcstoumax functions
Synopsis

1 #include <stddef.h> I for wchar _t
#include <inttypes.h>
intmax_t wcstoimax(const wchar_t * restrict nptr,
wchar_t ** restrict endptr, int base);
uintmax_t wcstoumax(const wchar_t * restrict nptr,
wchar_t ** restrict endptr, int base);

Description

7.8.1 Library 7.8.2.2

186 Committee Draft — August 3, 1998 WG14/N843

Thewcstoimax andwcstoumax functions are equivalent to thecstol , wcstoll
wcestoul , andwcestoull functions except that the initial portion of the wide string is
converted tontmax_t anduintmax_t representation, respectively.

Returns

Thewcstoimax function returns the converted value, if any. If no conversion could be
performed, zero is returned. If the correct value is outside the range of representable
values,INTMAX_MAXINTMAX_MIN, or UINTMAX_MAXSs returned (according to the
return type and sign of the value, if any), and the value of the rE&ANGEs stored in

erro .

7.8.2.2 Library 7.8.2.2

WG14/N843 Committee Draft — August 3, 1998 187

7.9 Alternative spellings<iso646.h>

The headexiso646.h> defines the following eleven macros (on the left) that expand
to the corresponding tokens (on the right):

and &&
and_eq &=
bitand &
bitor |
compl

not !
not eq !=
or |
or_eq |=
xor h
Xor_eq =

7.9 Library 7.9

188 Committee Draft — August 3, 1998 WG14/N843

7.10 Sizes of integer typeslimits.h>

The headeklimits.h> defines several macros that expand to various limits and
parameters of the standard integer types.

The macros, their meanings, and the constraints (or restrictions) on their values are listed
in5.2.4.2.1.

7.10 Library 7.10

WG14/N843 Committee Draft — August 3, 1998 189

7.11 Localization<locale.h>
The headexlocale.h> declares two functions, one type, and defines several macros.
The type is

struct Iconv

which contains members related to the formatting of numeric values. The structure shall
contain at least the following members, in any order. The semantics of the members and
their normal ranges are explained in 7.11.2.1. In'@ie locale, the members shall have

the values specified in the comments.

char *decimal_point; TR
char *thousands_sep; /e
char *grouping; s

char *mon_decimal_point; nm
char *mon_thousands_sep; "

char *mon_grouping; n

char *positive_sign; nm

char *negative_sign; n

char *currency_symbol, n

char frac_digits; /I CHAR_MAX
char p_cs_precedes; /I CHAR_MAX
char n_cs_precedes; /I CHAR_MAX
char p_sep_ by space; /I CHAR_MAX
char n_sep_by_ space; /I CHAR_MAX
char p_sign_posn; /I CHAR_MAX
char n_sign_posn; /I CHAR_MAX
char *int_curr_symbol; n

char int_frac_digits; /I CHAR_MAX

char int_p_cs_precedes; /I CHAR_MAX
char int_n_cs_precedes; /I CHAR_MAX
char int_p _sep_by space; /I CHAR_MAX
char int_n_sep_by space; /I CHAR_MAX
char int_p_sign_posn; /I CHAR_MAX
char int_n_sign_posn; /I CHAR_MAX

The macros defined aMJLL (described in 7.17); and

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME

which expand to integer constant expressions with distinct values, suitable for use as the
first argument to theetlocale function’? Additional macro definitions, beginning

7.11 Library 7.11

190 Committee Draft — August 3, 1998 WG14/N843

with the characterd C_ and an uppercase letfé?) may also be specified by the
implementation.

7.11.1 Locale control
7.11.1.1 Thesetlocale function
Synopsis

#include <locale.h>
char *setlocale(int category, const char *locale);

Description

The setlocale function selects the appropriate portion of the program’s locale as
specified by theategory andlocale arguments. Theetlocale function may be
used to change or query the program’s entire current locale or portions thereof. The value
LC_ALL for category names the program’s entire locale; the other values for
category name only a portion of the program’s localeC_COLLATEaffects the
behavior of thestrcoll andstrxfrm functions. LC_CTYPEaffects the behavior of

the character handling functid® and the multibyte and wide-character functions.
LC_MONETARYaffects the monetary formatting information returned by the
localeconv function. LC_NUMERICaffects the decimal-point character for the
formatted input/output functions and the string conversion functions, as well as the
nonmonetary formatting information returned by libealeconv function. LC_TIME
affects the behavior of the#rftime andstrfxtime functions.

A value of"C" for locale specifies the minimal environment for C translation; a value
of ™ for locale specifies the locale-specific native environment. Other
implementation-defined strings may be passed as the second argusatiaictae

At program startup, the equivalent of
setlocale(LC_ALL, "C");
is executed.
The implementation shall behave as if no library function callsetiecale function.
Returns

If a pointer to a string is given fdocale and the selection can be honored, the
setlocale function returns a pointer to the string associated with the specified
category for the new locale. If the selection cannot be honored,s#i®cale

function returns a null pointer and the program’s locale is not changed.

172) ISO/IEC 9945-2 specifies locale and charmap formats that may be used to specify locales for C.

173) See “future library directions” (7.26.5).

174) The only functions in 7.4 whose behavior is not affected by the current locateligie and
isxdigit

7.11 Library 7.11.1.1

WG14/N843 Committee Draft — August 3, 1998 191

A null pointer forlocale causes thesetlocale function to return a pointer to the
string associated with theategory for the program’s current locale; the program’s
locale is not changeld®

The pointer to string returned by thetlocale function is such that a subsequent call
with that string value and its associated category will restore that part of the program’s
locale. The string pointed to shall not be modified by the program, but may be
overwritten by a subsequent call to etlocale function.

Forward references: formatted input/output functions (7.19.6), the multibyte character
functions (7.20.7), the multibyte string functions (7.20.8), string conversion functions
(7.20.1), thestrcoll function (7.21.4.3), thestrftime function (7.23.3.5), the
strixtime function (7.23.3.6), thetrxfrm function (7.21.4.5).

7.11.2 Numeric formatting convention inquiry
7.11.2.1 Thdocaleconv function
Synopsis

#include <locale.h>
struct Iconv *localeconv(void);

Description

Thelocaleconv function sets the components of an object with stpect Iconv
with values appropriate for the formatting of numeric quantities (monetary and otherwise)
according to the rules of the current locale.

The members of the structure with tygear* are pointers to strings, any of which
(exceptdecimal_point) can point td™ , to indicate that the value is not available in
the current locale or is of zero length. Apart frgrouping andmon_grouping , the
strings shall start and end in the initial shift state. The members withchare are
nonnegative numbers, any of which can@dAR_MAXo indicate that the value is not
available in the current locale. The members include the following:

char *decimal_point
The decimal-point character used to format nonmonetary quantities.

char *thousands_sep
The character used to separate groups of digits before the decimal-point
character in formatted nonmonetary quantities.

char *grouping
A string whose elements indicate the size of each group of digits in formatted
nonmonetary quantities.

175) The implementation shall arrange to encode in a string the various categories due to a heterogeneous
locale whercategory has the valueC_ALL.

7.11.1.1 Library 7.11.2.1

192 Committee Draft — August 3, 1998 WG14/N843

char *mon_decimal_point
The decimal-point used to format monetary quantities.

char *mon_thousands_sep
The separator for groups of digits before the decimal-point in formatted
monetary quantities.

char *mon_grouping
A string whose elements indicate the size of each group of digits in formatted
monetary quantities.

char *positive_sign
The string used to indicate a nonnegative-valued formatted monetary quantity.

char *negative_sign
The string used to indicate a negative-valued formatted monetary quantity.

char *currency_symbol
The local currency symbol applicable to the current locale.

char frac_digits
The number of fractional digits (those after the decimal-point) to be displayed
in a locally formatted monetary quantity.

char p_cs_precedes
Set to 1 or O if theeurrency_symbol respectively precedes or succeeds
the value for a nonnegative locally formatted monetary quantity.

char n_cs_precedes
Set to 1 or O if theeurrency_symbol respectively precedes or succeeds
the value for a negative locally formatted monetary quantity.

char p_sep_by space
Set to a value indicating the separation of¢dheency_symbol , the sign
string, and the value for a nonnegative locally formatted monetary quantity.

char n_sep_by space
Set to a value indicating the separation of¢dheency_symbol | the sign
string, and the value for a negative locally formatted monetary quantity.

char p_sign_posn
Set to a value indicating the positioning of thesitive_sign for a
nonnegative locally formatted monetary quantity.

char n_sign_posn
Set to a value indicating the positioning of thegative_sign for a
negative locally formatted monetary quantity.

char *int_curr_symbol
The international currency symbol applicable to the current locale. The first
three characters contain the alphabetic international currency symbol in
accordance with those specified in 1SO 4217:1995. The fourth character

7.11.2.1 Library 7.11.2.1

WG14/N843 Committee Draft — August 3, 1998 193

(immediately preceding the null character) is the character used to separate the
international currency symbol from the monetary quantity.

char int_frac_digits
The number of fractional digits (those after the decimal-point) to be displayed
in an internationally formatted monetary quantity.

char int_p_cs_precedes

Set to 1 or O if thent_currency symbol respectively precedes or
succeeds the value for a nonnegative internationally formatted monetary
guantity.

char int_n_cs_precedes
Set to 1 or O if thent_currency_symbol respectively precedes or
succeeds the value for a negative internationally formatted monetary quantity.

char int_p_sep by space

Set to a value indicating the separation ofithecurrency_symbol , the
sign string, and the value for a nonnegative internationally formatted monetary
guantity.

char int_n_sep_by space
Set to a value indicating the separation ofithecurrency_symbol , the
sign string, and the value for a negative internationally formatted monetary
quantity.

char int_p_sign_posn
Set to a value indicating the positioning of thesitive_sign for a
nonnegative internationally formatted monetary quantity.

char int_n_sign_posn
Set to a value indicating the positioning of thegative_sign for a
negative internationally formatted monetary quantity.

The elements ofjrouping and mon_grouping are interpreted according to the
following:

CHAR_MAX No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder of the
digits.
other The integer value is the number of digits that compose the current group.

The next element is examined to determine the size of the next group of
digits before the current group.

The values ofp_sep by space , n_sep by space , int_p_sep by space ,
andint_n_sep_by space are interpreted according to the following:

0 No space separates the currency symbol and value.

7.11.2.1 Library 7.11.2.1

194 Committee Draft — August 3, 1998 WG14/N843

1 A space separates the currency symbol and value.
2 A space separates the currency symbol and the sign string, if adjacent.

The values of p_sign_posn , n_sign_posn , int_p_sign_posn , and
int_n_sign_posn are interpreted according to the following:

0 Parentheses surround the quantity and currency symbol.

The sign string precedes the quantity and currency symbol.
The sign string succeeds the quantity and currency symbol.
The sign string immediately precedes the currency symbol.

A W N

The sign string immediately succeeds the currency symbol.

The implementation shall behave as if no library function calls Idlcaleconv
function.

Returns

The localeconv function returns a pointer to the filled-in object. The structure
pointed to by the return value shall not be modified by the program, but may be
overwritten by a subsequent call to thealeconv function. In addition, calls to the
setlocale function with categoriesC_ALL, LC_MONETARYr LC_NUMERIGnay
overwrite the contents of the structure.

EXAMPLE The following table illustrates the rules which may well be used by four countries to format
monetary quantities.

Local format International format
Country Positive Negative Positive Negative
Finland 1.234,56 mk -1.234,56 mk FIM 1.234,56 FIM -1]|234,56
Italy L.1.234 -L.1.234 ITL |1.234 -ITL 1234
Netherlands|| f 1.234,56 fl -1.234,56 NLG| 1.234,56 NLG -1.234,56

Switzerland | SFrs.1,234.56 SFrs.1,234.56C CHF 1,234.56 CHF 1,234.56C

For these four countries, the respective values for the monetary members of the structure returned by
localeconv are:

7.11.2.1 Library 7.11.2.1

WG14/N843

Committee Draft — August 3, 1998

Finland

Italy

Netherlands

Switzerland

mon_decimal_point
mon_thousands_sep
mon_grouping
positive_sign
negative_sign
currency_symbol
frac_digits
p_cs_precedes
n_cs_precedes
p_sep_by space
n_sep_by space
p_sign_posn
n_sign_posn
int_curr_symbol
int_frac_digits
int_p_cs_precedes
int_n_cs_precedes
int_p_sep_by space
int_n_sep_by space
int_p_sign_posn
int_n_sign_posn

7.11.2.1

"FIM

PR RPRPROON

AR RERPRREN

||\3 1

“ITLT"

PR OOR RO

PR RPRRPRRPRREPO

||\3||

"\u014

"NLG "

Library

AR RPRPRPEDN

AR RPRPRPEDN

"CHF "

NFPOORFREFEN

NRPRERPRERN

195

7.11.2.1

196 Committee Draft — August 3, 1998 WG14/N843

7.12 Mathematics<smath.h>

The headexmath.h> declares two types and several mathematical functions and
defines several macros. Most synopses specify a family of functions consisting of a
principal function with one or mordouble parameters, @ouble return value, or

both; and other functions with the same name but WwitAnd | suffixes which are
corresponding functions witfioat andlong double parameters, return values, or
both17®) Integer arithmetic functions and conversion functions are discussed later.

The types

float_t
double_t

are floating types at least as wideflamt anddouble , respectively, and such that
double t is at least as wide afloat t . If FLT _EVAL METHODequals O,
float_t and double_t are float and double , respectively; if
FLT_EVAL_METHOI[2quals 1, they are bottouble ; if FLT _EVAL_METHOI[Rquals
2, they are botllong double ; and for other values ¢&iLT_EVAL_METHOhey are
otherwise implementation-definéd’)

The macro
HUGE_VAL

expands to a positivdouble constant expression, not necessarily representable as a
float . The macros

HUGE_VALF
HUGE_VALL

are respectivelfloat andlong double analogs oHUGE_VALL"®
The macro
INFINITY

expands to a constant expression of tijpat representing an implementation-defined
positive or unsigned infinity, if available; else to a positive constant offtgpe that
overflows at translation time'?)

176) Particularly on systems with wide expression evaluatiemath.h> function might pass arguments
and return values in wider format than the synopsis prototype indicates.

177) The typedloat t anddouble_t are intended to be the implementation’s most efficient types at
least as wide aloat anddouble , respectively. FOFLT_EVAL_METHOI®qual O, 1, or 2, the
typefloat_t s the narrowest type used by the implementation to evaluate floating expressions.

178) HUGE_VAL HUGE_VALF and HUGE_VALLcan be positive infinities in an implementation that
supports infinities.

179) In this case, usinlFINITY will violate the constraint in 6.4.4 and thus require a diagnostic.

7.12 Library 7.12

WG14/N843 Committee Draft — August 3, 1998 197

The macro
NAN

is defined if and only if the implementation supports quiet NaNs folldhe type. It
expands to a constant expression of tijpat representing an implementation-defined
quiet NaN.

The macros

FP_INFINITE
FP_NAN
FP_NORMAL
FP_SUBNORMAL
FP_ZERO

are for number classification. They represent the mutually exclusive kinds of floating-
point values. They expand to integer constant expressions with distinct values.

The macro
FP_FAST_FMA

is optionally defined. If defined, it indicates that fnea function generally executes
about as fast as, or faster than, a multiply and an adtbuffle operands®® The
macros

FP_FAST_FMAF
FP_FAST_FMAL

are, respectivelfloat andlong double analogs oFP_FAST_FMA
The macros

FP_ILOGBO
FP_ILOGBNAN

expand to integer constant expressions whose values are returiheghbly) if X is
zero or NaN, respectively. The value BP_ILOGBO shall be eithedNT_MIN or
-INT_MAX. The value ofFP_ILOGBNANshall be eithelNT_MAXor INT_MIN .

Recommended practice

Conversion from (at leastjouble to decimal withDECIMAL_DIG digits and back
should be the identity function (which assures that conversion from the widest supported
IEC 60559 format to decimal witibECIMAL_DIG digits and back is the identity
function).

180) Typically, theFP_FAST_FMAmacro is defined if and only if thBna function is implemented
directly with a hardware multiply-add instruction. Software implementations are expected to be
substantially slower.

7.12 Library 7.12

198 Committee Draft — August 3, 1998 WG14/N843

7.12.1 Treatment of error conditions

The behavior of each of the functions<dmath.h> is specified for all representable
values of its input arguments, except where stated otherwise.

For all functions, alomain erroroccurs if an input argument is outside the domain over
which the mathematical function is defined. The description of each function lists any
required domain errors; an implementation may define additional domain errors, provided
that such errors are consistent with the mathematical definition of the fulfiddn a
domain error, the function returns an implementation-defined value; whether the integer
expressiorerrno acquires the valuEDOMSs implementation-defined.

Similarly, arange error occurs if the mathematical result of the function cannot be
represented in an object of the specified type, due to extreme magnitude. A floating
result overflows if the magnitude of the mathematical result is finite but so large that the
mathematical result cannot be represented, without extraordinary roundoff error, in an
object of the specified type. If a floating result overflows and default rounding is in
effect, or if the mathematical result is an exact infinity (for exarggé.0)), then

the function returns the value of the mattdGE_VALHUGE_VALFor HUGE_VALL
according to the return type, with the same sign as the correct value of the function;
whether errno acquires the valueERANGE when a range error occurs is
implementation-defined. The result underflows if the magnitude of the mathematical
result is so small that the mathematical result cannot be represented, without
extraordinary roundoff error, in an object of the specified %é.lf the result
underflows, the function returns a value whose magnitude is no greater than the smallest
normalized positive number in the specified type and is otherwise implementation-
defined; whetheerrno acquires the valuERANGEs implementation-defined.

181) In an implementation that supports infinities, this allows an infinity as an argument to be a domain
error if the mathematical domain of the function does not include the infinity.

182) The term underflow here is intended to encompassgratiual underflonas in IEC 60559 and also
flush-to-zeraunderflow.

7.12.1 Library 7.12.1

WG14/N843 Committee Draft — August 3, 1998 199

7.12.2 TheFP_CONTRACPragma
Synopsis

#include <math.h>
#pragma STDC FP_CONTRACT on-off-switch

Description

The FP_CONTRACPragma can be used to allow (if the staterisor disallow (if the

state isoff) the implementation to contract expressions (6.5). Each pragma can occur
either outside external declarations or preceding all explicit declarations and statements
inside a compound statement. When outside external declarations, the pragma takes
effect from its occurrence until anotheP_CONTRACPragma is encountered, or until

the end of the translation unit. When inside a compound statement, the pragma takes
effect from its occurrence until anothleP_ CONTRAC Pragma is encountered (within a
nested compound statement), or until the end of the compound statement; at the end of a
compound statement the state for the pragma is restored to its condition just before the
compound statement. If this pragma is used in any other context, the behavior is
undefined. The default staten(or off) for the pragma is implementation-defined.

7.12.3 Classification macros

In the synopses in this subclauseal-floating indicates that the argument shall be an
expression of real floating type. The result is undefined if an argument is not of real
floating type.

7.12.3.1 Thdpclassify macro

Synopsis
#include <math.h>
int fpclassify(real-floating x);
Description
The fpclassify macro classifies its argument value as NaN, infinite, normal,

subnormal, or zero. First, an argument represented in a format wider than its semantic
type is converted to its semantic type. Then classification is based on the type of the
argument8®)

Returns

The fpclassify macro returns the value of the number classification macro
appropriate to the value of its argument.

EXAMPLE Thefpclassify macro might be implemented in terms of ordinary functions as

183) Since an expression can be evaluated with more range and precision than its type has, it is important to
know the type that classification is based on. For example, a nntaldouble value might
become subnormal when converteditmble , and zero when convertedftoat

7.12.1 Library 7.12.3.1

200 Committee Draft — August 3, 1998 WG14/N843

#define fpclassify(x) \
((sizeof (x) == sizeof (float)) ? \
__fpclassifyf(x) \
. (sizeof (x) == sizeof (double)) ?'\
__fpclassifyd(x) \
__fpclassifyl(x))

7.12.3.2 Thasfinite macro
Synopsis

#include <math.h>
int isfinite(real-floating x);

Description

The isfinite macro determines whether its argument has a finite value (zero,
subnormal, or normal, and not infinite or NaN). First, an argument represented in a
format wider than its semantic type is converted to its semantic type. Then determination
is based on the type of the argument.

Returns

Theisfinite macro returns a nonzero value if and only if its argument has a finite
value.

7.12.3.3 Thdsinf macro
Synopsis

#include <math.h>
int isinf(real-floating x);

Description

Theisinf macro determines whether its argument value is an infinity (positive or
negative). First, an argument represented in a format wider than its semantic type is
converted to its semantic type. Then determination is based on the type of the argument.

Returns

Theisinf macro returns a nonzero value if and only if its argument has an infinite
value.

7.12.3.1 Library 7.12.3.3

WG14/N843 Committee Draft — August 3, 1998 201

7.12.3.4 Thasnan macro
Synopsis

#include <math.h>
int isnan(real-floating x);

Description

Theisnan macro determines whether its argument value is a NaN. First, an argument
represented in a format wider than its semantic type is converted to its semantic type.
Then determination is based on the type of the argutfiént.

Returns
Theisnan macro returns a nonzero value if and only if its argument has a NaN value.

7.12.3.5 Thasnormal macro

Synopsis

#include <math.h>

int isnormal(real-floating x);
Description

Theisnormal macro determines whether its argument value is normal (neither zero,
subnormal, infinite, nor NaN). First, an argument represented in a format wider than its
semantic type is converted to its semantic type. Then determination is based on the type
of the argument.

Returns

Theisnormal macro returns a nonzero value if and only if its argument has a normal
value.

184) For theisnan macro, the type for determination does not matter unless the implementation supports
NaNs in the evaluation type but not in the semantic type.

7.12.3.3 Library 7.12.3.5

202 Committee Draft — August 3, 1998 WG14/N843

7.12.3.6 Thesignbit macro

Synopsis

#include <math.h>

int signbit(real-floating x);
Description

Thesignbit macro determines whether the sign of its argument value is neff&tive.
Returns

Thesignbit macro returns a nonzero value if and only if the sign of its argument value
iS negative.

7.12.4 Trigonometric functions
7.12.4.1 Theacos functions
Synopsis

#include <math.h>

double acos(double x);

float acosf(float x);

long double acosl(long double x);

Description

Theacos functions compute the principal value of the arc cosine. @& domain error
occurs for arguments not in the range [-1, +1].

Returns

Theacos functions return the arc cosine in the range7@adians.
7.12.4.2 Theasin functions

Synopsis

#include <math.h>

double asin(double x);

float asinf(float x);

long double asinl(long double x);

Description

Theasin functions compute the principal value of the arc sin&.oA domain error
occurs for arguments not in the range [-1, +1].

Returns

185) Thesignbit macro reports the sign of all values, including infinities, zeros, and NaNs.

7.12.3.5 Library 7.12.4.2

WG14/N843 Committee Draft — August 3, 1998 203

Theasin functions return the arc sine in the ranga'?; +772] radians.
7.12.4.3 Theatan functions
Synopsis

#include <math.h>

double atan(double x);

float atanf(float x);

long double atanl(long double x);

Description

Theatan functions compute the principal value of the arc tangert of
Returns

Theatan functions return the arc tangent in the rang@4;-+72] radians.
7.12.4.4 Theatan2 functions

Synopsis

#include <math.h>

double atan2(double y, double x);

float atan2f(float y, float x);

long double atan2l(long double y, long double x);

Description

Theatan2 functions compute the principal value of the arc tangemt /of, using the
signs of both arguments to determine the quadrant of the return value. A domain error
may occur if both arguments are zero.

Returns

Theatan2 functions return the arc tangentyof x, in the range [+7] radians.
7.12.4.5 Thecos functions

Synopsis

#include <math.h>

double cos(double x);

float cosf(float x);

long double cosl(long double x);

Description

Thecos functions compute the cosinexof{measured in radians).
Returns

Thecos functions return the cosine value.

7.12.4.2 Library 7.12.4.5

204 Committee Draft — August 3, 1998 WG14/N843

7.12.4.6 Thesin functions
Synopsis

#include <math.h>

double sin(double x);

float sinf(float x);

long double sinl(long double x);

Description

Thesin functions compute the sine f(measured in radians).
Returns

Thesin functions return the sine value.

7.12.4.7 Thean functions

Synopsis

#include <math.h>

double tan(double x);

float tanf(float x);

long double tanl(long double x);

Description

Thetan functions return the tangent »f(measured in radians).
Returns

Thetan functions return the tangent value.

7.12.5 Hyperbolic functions

7.12.5.1 Theacosh functions

Synopsis

#include <math.h>

double acosh(double x);

float acoshf(float x);

long double acoshl(long double x);

Description

Theacosh functions compute the (nonnegative) arc hyperbolic cosine &f domain
error occurs for arguments less than 1.

Returns
Theacosh functions return the arc hyperbolic cosine in the ranged, +

7.12.4.5 Library 7.12.5.1

WG14/N843 Committee Draft — August 3, 1998 205

7.12.5.2 Theasinh functions
Synopsis

#include <math.h>

double asinh(double x);

float asinhf(float x);

long double asinhl(long double x);

Description

Theasinh functions compute the arc hyperbolic sineof
Returns

Theasinh functions return the arc hyperbolic sine value.
7.12.5.3 Theatanh functions

Synopsis

#include <math.h>

double atanh(double x);

float atanhf(float x);

long double atanhl(long double x);

Description

Theatanh functions compute the arc hyperbolic tangenk oA domain error occurs
for arguments not in the range [-1, +1]. A range error may occur if the argument equals
-1 or +1.

Returns

Theatanh functions return the arc hyperbolic tangent value.
7.12.5.4 Thecosh functions

Synopsis

#include <math.h>

double cosh(double x);

float coshf(float x);

long double coshl(long double x);

Description

The cosh functions compute the hyperbolic cosinexof A range error occurs if the
magnitude ok is too large.

Returns
Thecosh functions return the hyperbolic cosine value.

7.12.5.1 Library 7.12.5.4

206 Committee Draft — August 3, 1998 WG14/N843

7.12.5.5 Thesinh functions
Synopsis

#include <math.h>

double sinh(double x);

float sinhf(float x);

long double sinhl(long double x);

Description

The sinh functions compute the hyperbolic sine xf A range error occurs if the
magnitude ok is too large.

Returns

Thesinh functions return the hyperbolic sine value.
7.12.5.6 Theaanh functions

Synopsis

#include <math.h>

double tanh(double x);

float tanhf(float x);

long double tanhl(long double x);

Description

Thetanh functions compute the hyperbolic tangenkof
Returns

Thetanh functions return the hyperbolic tangent value.
7.12.6 Exponential and logarithmic functions
7.12.6.1 The=xp functions

Synopsis

#include <math.h>

double exp(double x);

float expf(float x);

long double expl(long double x);

Description

Theexp functions compute the basesexponential ofk: €. A range error occurs if the
magnitude ok is too large.

Returns

Theexp functions return the exponential value.

7.125.4 Library 7.12.6.1

WG14/N843 Committee Draft — August 3, 1998 207

7.12.6.2 Theexp2 functions
Synopsis

#include <math.h>

double exp2(double x);

float exp2f(float x);

long double exp2l(long double x);

Description

Theexp2 functions compute the base-2 exponentiat:d®*. A range error occurs if the
magnitude ok is too large.

Returns

Theexp2 functions return the base-2 exponential value.
7.12.6.3 Theaxpml functions

Synopsis

#include <math.h>

double expml(double x);

float expm1f(float x);

long double expm1i(long double x);

Description

Theexpm1 functions compute the bageexponential of the argument, minuset:—- 1.
A range error occurs ¥ is too larget®®)

Returns
Theexpm1 functions return the value ef — 1.

186) For small magnitude, expm1(x) is expected to be more accurate teap(x) - 1

7.12.6.1 Library 7.12.6.3

208 Committee Draft — August 3, 1998 WG14/N843

7.12.6.4 Thdrexp functions
Synopsis

#include <math.h>

double frexp(double value, int *exp);

float frexpf(float value, int *exp);

long double frexpl(long double value, int *exp);

Description

Thefrexp functions break a floating-point number into a normalized fraction and an
integral power of 2. They store the integer initite object pointed to bgxp .

Returns

Thefrexp functions return the value, such thak has a magnitude in the interval [1/2,
1) or zero, andvalue equalsx x 2P . If value is zero, both parts of the result are
zero.

7.12.6.5 Thdlogb functions
Synopsis

#include <math.h>

int ilogb(double x);

int ilogbf(float x);

int ilogbl(long double x);

Description

Theilogb functions extract the exponentxfas a signeiht value. Ifx is zero they
compute the valuEP_ILOGBO; if x is infinite they compute the valuRT_MAX; if x is

a NaN they compute the valid®_ILOGBNAN otherwise, they are equivalent to calling
the correspondingpgb function and casting the returned value to tyge . A range
error may occur ik is 0.

Returns
Theilogb functions return the exponentxfas a signetht value.
Forward references: thelogb functions (7.12.6.11).

7.12.6.3 Library 7.12.6.5

WG14/N843 Committee Draft — August 3, 1998 209

7.12.6.6 Thddexp functions
Synopsis

#include <math.h>

double ldexp(double x, int exp);

float Idexpf(float x, int exp);

long double Idexpl(long double X, int exp);

Description

Theldexp functions multiply a floating-point number by an integral power of 2. A
range error may occur.

Returns

Theldexp functions return the value af x 257
7.12.6.7 Thdog functions

Synopsis

#include <math.h>

double log(double x);

float logf(float x);

long double logl(long double x);

Description

Thelog functions compute the basgnatural) logarithm ok. A domain error occurs if
the argument is negative. A range error may occur if the argument is zero.

Returns

Thelog functions return the baselogarithm value.
7.12.6.8 Thdogl10 functions

Synopsis

#include <math.h>

double log10(double x);

float log10f(float x);

long double log10Il(long double x);

Description

Thelogl0 functions compute the base-10 (common) logarithmi.oA domain error
occurs if the argument is negative. A range error may occur if the argument is zero.

Returns
Thelog10 functions return the base-10 logarithm value.

7.12.6.5 Library 7.12.6.8

210 Committee Draft — August 3, 1998 WG14/N843

7.12.6.9 Thdoglp functions
Synopsis

#include <math.h>

double loglp(double x);

float log1pf(float x);

long double log1pl(long double x);

Description

Theloglp functions compute the basgnatural) logarithm of 1 plus the arguméf?)
A domain error occurs if the argument is less than —1. A range error may occur if the
argument equals —1.

Returns

Theloglp functions return the value of the baskgarithm of 1 plus the argument.
7.12.6.10 Thdog2 functions

Synopsis

#include <math.h>

double log2(double x);

float log2f(float x);

long double log2l(long double x);

Description

Thelog2 functions compute the base-2 logarithmxofA domain error occurs if the
argument is less than zero. A range error may occur if the argument is zero.

Returns

Thelog2 functions return the base-2 logarithm value.

187) For small magnitude, loglp(x) is expected to be more accurate thag{l + x)

7.12.6.8 Library 7.12.6.10

WG14/N843 Committee Draft — August 3, 1998 211

7.12.6.11 Thdogb functions
Synopsis

#include <math.h>

double logb(double x);

float logbf(float x);

long double logbl(long double x);

Description

Thelogb functions extract the exponentxfas a signed integer value in floating-point
format. If x is subnormal it is treated as though it were normalized; thus, for positive
finite x,

1< x x FLT_RADIX™% ®) < FLT RADIX
A domain error may occur if the argument is zero.
Returns
Thelogb functions return the signed exponeniof
7.12.6.12 Themodf functions
Synopsis

#include <math.h>

double modf(double value, double *iptr);

float modff(float value, float *iptr);

long double modfl(long double value, long double *iptr);

Description

Themodf functions break the argumerdlue into integral and fractional parts, each of
which has the same type and sign as the argument. They store the integral part (in
floating-point format) in the object pointed to ipyr

Returns

Themodf functions return the value of the signed fractional paviahie .
7.12.6.13 Thescalbn andscalbln functions

Synopsis

#include <math.h>

double scalbn(double x, int n);

float scalbnf(float x, int n);

long double scalbnl(long double x, int n);
double scalbln(double x, long int n);

float scalblnf(float x, long int n);

long double scalbinl(long double X, long int n);

7.12.6.10 Library 7.12.6.13

212 Committee Draft — August 3, 1998 WG14/N843

Description

The scalbn and scalbln functions computex x FLT _RADIX" efficiently, not
normally by computindgLT_RADIX" explicitly. A range error may occur.

Returns

Thescalbn andscalbln functions return the value afx FLT_RADIX".
7.12.7 Power and absolute-value functions

7.12.7.1 Thecbrt functions

Synopsis

#include <math.h>

double cbrt(double x);

float cbrtf(float x);

long double cbrtl(long double x);

Description

Thecbrt functions compute the real cube rooxof
Returns

Thecbrt functions return the value of the cube root.
7.12.7.2 Thdabs functions

Synopsis

#include <math.h>

double fabs(double x);

float fabsf(float x);

long double fabsl(long double x);

Description

Thefabs functions compute the absolute value of a floating-point nusber
Returns

Thefabs functions return the absolute valuexof

7.12.6.13 Library 7.12.7.2

WG14/N843 Committee Draft — August 3, 1998 213

7.12.7.3 Thehypot functions
Synopsis

#include <math.h>

double hypot(double x, double y);

float hypotf(float x, float y);

long double hypotl(long double x, long double y);

Description

The hypot functions compute the square root of the sum of the squaresandly,
without undue overflow or underflow. A range error may occur.

Returns

Thehypot functions return the value of the square root of the sum of the squares.
7.12.7.4 Thepow functions

Synopsis

#include <math.h>

double pow(double x, double y);

float powf(float x, float y);

long double powl(long double x, long double y);

Description

The pow functions computex raised to the powey. A domain error occurs ik is
negative andy is finite and not an integer value. A domain error occurs if the result
cannot be represented whens zero andy is less than or equal to zero. A range error
may occur.

Returns

Thepow functions return the value afraised to the power.

7.12.7.2 Library 7.12.7.4

214 Committee Draft — August 3, 1998 WG14/N843

7.12.7.5 Thesgrt functions
Synopsis

#include <math.h>

double sgrt(double x);

float sqrtf(float x);

long double sqgrtl(long double x);

Description

Thesgrt functions compute the nonnegative square roat & domain error occurs if
the argument is less than zero.

Returns

Thesqrt functions return the value of the square root.
7.12.8 Error and gamma functions

7.12.8.1 Theerf functions

Synopsis

#include <math.h>

double erf(double x);

float erff(float x);

long double erfl(long double x);

Description
. . 2 X _
Theerf functions compute the error functlonxva— J'O etdt,
T

Returns

Theerf functions return the error function value.
7.12.8.2 Theerfc functions

Synopsis

#include <math.h>

double erfc(double x);

float erfcf(float x);

long double erfcl(long double x);

Description

. . 2 o _
Theerfc functions compute the complementary error functlonx:ofv—_[etdt. A
JT JX
range error occurs ¥ is too large.
Returns

7.12.7.4 Library 7.12.8.2

WG14/N843 Committee Draft — August 3, 1998 215

Theerfc functions return the complementary error function value.
7.12.8.3 Thdgamma functions
Synopsis

#include <math.h>

double Igamma(double x);

float Igammaf(float x);

long double Igammal(long double x);

Description

Thelgamma functions compute the natural logarithm of the absolute value of gamma of
x:loge| F(X) |. Arange error occurs ¥ is too large or ik is a negative integer or zero.

Returns

Thelgamma functions return the value of the natural logarithm of the absolute value of
gamma oix.

7.12.8.4 Thagamma functions
Synopsis

#include <math.h>

double tgamma(double x);

float tgammaf(float x);

long double tgammal(long double x);

Description

Thetgamma functions compute the gamma functionxofl (x). A domain error occurs
if X IS a negative integer or zero. A range error may occur if the magnitudesdbo
large or too small.

Returns
Thetgamma functions return the gamma function value.

7.12.9 Nearest integer functions

7.12.8.2 Library 7.12.9

216 Committee Draft — August 3, 1998 WG14/N843

7.12.9.1 Thecell functions
Synopsis

#include <math.h>

double ceil(double x);

float ceilf(float x);

long double ceill(long double x);

Description
Theceil functions compute the smallest integer value not lessxthat]
Returns

The ceil functions return the smallest integer value not less #haexpressed as a
floating-point number.

7.12.9.2 Thdloor functions
Synopsis

#include <math.h>

double floor(double x);

float floorf(float x);

long double floorl(long double x);

Description
Thefloor functions compute the largest integer value not greatexthar]
Returns

Thefloor functions return the largest integer value not greater thaxpressed as a
floating-point number.

7.12.9.3 Thenearbyint functions
Synopsis

#include <math.h>

double nearbyint(double x);

float nearbyintf(float x);

long double nearbyintl(long double x);

Description

The nearbyint functions round their argument to an integer value in floating-point
format, using the current rounding direction and without raisingné»eactexception.

Returns
Thenearbyint functions return the rounded integer value.

7.12.9 Library 7.12.9.3

WG14/N843 Committee Draft — August 3, 1998 217

7.12.9.4 Thaint functions
Synopsis

#include <math.h>

double rint(double x);

float rintf(float x);

long double rintl(long double x);

Description

Therint functions differ from thenearbyint functions (7.12.9.3) only in that the
rint functions do raise the inexact exception if the result differs in value from the
argument (see F.9.6.3 and F.9.6.4).

Returns

Therint functions return the rounded integer value.
7.12.9.5 Thdrint and llrint functions
Synopsis

#include <math.h>

long int Irint(double x);

long int Irintf(float x);

long int Irintl(long double x);

long long int llrint(double x);

long long int lIrintf(float x);

long long int lIrintl(long double x);

Description

Thelrint andllrint functions round their argument to the nearest integer value,
rounding according to the current rounding direction. If the rounded value is outside the
range of the return type, the numeric result is unspecified. A range error may occur if the
magnitude ok is too large.

Returns

Thelrint andllrint functions return the rounded integer value.

7.12.9.3 Library 7.12.9.5

218 Committee Draft — August 3, 1998 WG14/N843

7.12.9.6 Thaound functions
Synopsis

#include <math.h>

double round(double x);

float roundf(float x);

long double roundl(long double x);

Description

Theround functions round their argument to the nearest integer value in floating-point
format, rounding halfway cases away from zero, regardless of the current rounding
direction.

Returns

Theround functions return the rounded integer value.
7.12.9.7 Thdround andllround functions
Synopsis

#include <math.h>

long int Iround(double x);

long int Iroundf(float x);

long int Iroundl(long double x);

long long int llround(double x);

long long int liroundf(float x);

long long int llroundl(long double Xx);

Description

Thelround andllround functions round their argument to the nearest integer value,
rounding halfway cases away from zero, regardless of the current rounding direction. If
the rounded value is outside the range of the return type, the numeric result is unspecified.
A range error may occur if the magnitudexak too large.

Returns

Thelround andllround functions return the rounded integer value.

7.12.9.5 Library 7.12.9.7

WG14/N843 Committee Draft — August 3, 1998 219

7.12.9.8 Thdrunc functions
Synopsis

#include <math.h>

double trunc(double x);

float truncf(float x);

long double truncl(long double x);

Description

The trunc functions round their argument to the integer value, in floating format,
nearest to but no larger in magnitude than the argument.

Returns

Thetrunc functions return the truncated integer value.
7.12.10 Remainder functions

7.12.10.1 Thdmod functions

Synopsis

#include <math.h>

double fmod(double x, double y);

float fmodf(float x, float y);

long double fmodl(long double x, long double y);

Description
Thefmod functions compute the floating-point remaindex dfy .
Returns

Thefmod functions return the value — ny, for some integen such that, ify is nonzero,
the result has the same sigrkxaand magnitude less than the magnitudg.df y is zero,
whether a domain error occurs or tfmeod functions return zero is implementation-
defined.

7.12.9.7 Library 7.12.10.1

220 Committee Draft — August 3, 1998 WG14/N843

7.12.10.2 Theemainder functions
Synopsis

#include <math.h>

double remainder(double x, double y);

float remainderf(float x, float y);

long double remainderl(long double x, long double y);

Description

Theremainder functions compute the remaindeREM y required by IEC 60558°)
Returns

Theremainder functions return the value afREMYy.

7.12.10.3 Theemquo functions

Synopsis

#include <math.h>

double remquo(double x, double y, int *quo);

float remquof(float x, float y, int *quo);

long double remquol(long double x, long double y,
int *quo);

Description

Theremquo functions compute the same remainder asréin@ainder functions. In
the object pointed to bguo they store a value whose sign is the sigr 6fy and whose
magnitude is congruent moduld B the magnitude of the integral quotient>of y,
wheren is an implementation-defined integer greater than or equal to 3.

Returns

Theremquo functions return the value afREMYy.

7.12.11 Manipulation functions

188) “When y # 0, the remainder = x REM vy is defined regardless of the rounding mode by the
mathematical relatiom = x — ny, wheren is the integer nearest the exact valuexdfy; whenever
| n=x/y|=1/2, thennis even. Thus, the remainder is always exact. 94f0, its sign shall be that
of x.” This definition is applicable for all implementations.

7.12.10.1 Library 7.12.11

WG14/N843 Committee Draft — August 3, 1998 221

7.12.11.1 Thecopysign functions
Synopsis

#include <math.h>

double copysign(double x, double y);

float copysignf(float x, float y);

long double copysignl(long double x, long double y);

Description

The copysign functions produce a value with the magnitudexand the sign of.

They produce a NaN (with the sign g) if x is a NaN. On implementations that
represent a signed zero but do not treat negative zero consistently in arithmetic
operations, theopysign functions regard the sign of zero as positive.

Returns

Thecopysign functions return a value with the magnitudexand the sign oy .
7.12.11.2 Thenan functions

Synopsis

#include <math.h>

double nan(const char *tagp);

float nanf(const char *tagp);

long double nanl(const char *tagp);

Description

The call nan(" n-char-sequen¢g is equivalent to strtod("NAN(n-char-

sequencg, (char**) NULL) ; the call nan(™) IS equivalent to
strtod("NAN()", (char**) NULL) . If tagp does not point to an n-char

sequence or an empty string, the call is equivalerstrtod("NAN", (char**)
NULL). Calls tonanf andnanl are equivalent to the corresponding callstibof
andstrtold

Returns

Thenan functions return a quiet NaN, if available, with content indicated thréamgh .
If the implementation does not support quiet NaNs, the functions return zero.

Forward references: thestrtod |, strtof |, andstrtold functions (7.20.1.3).

7.12.11 Library 7.12.11.2

222 Committee Draft — August 3, 1998 WG14/N843

7.12.11.3 Thenextafter functions
Synopsis

#include <math.h>

double nextafter(double x, double y);

float nextafterf(float x, float y);

long double nextafterl(long double x, long double y);

Description

The nextafter functions determine the next representable value, in the type of the
function, afterx in the direction ofy, wherex andy are first converted to the type of the
function®) Thenextafter ~ functions returry if x equalsy. A range error may occur

if the magnitude of x is the largest finite value representable in the type and the result is
infinite or not representable in the type.

Returns

The nextafter functions return the next representable value in the specified format
afterx in the direction ofy.

7.12.11.4 Thenextafterx functions
Synopsis

#include <math.h>

double nextafterx(double x, long double y);

float nextafterxf(float x, long double y);

long double nextafterxl(long double x, long double y);

Description

Thenextafterx functions are equivalent to timextafter functions except that the
second parameter has typeg double .1°9)

7.12.12 Maximum, minimum, and positive difference functions

189) The argument values are converted to the type of the function, even by a macro implementation of the
function.

190) The result of theextafterx functions is determined in the type of the function, without loss of
range or precision in a floating second argument.

7.12.11.2 Library 7.12.12

WG14/N843 Committee Draft — August 3, 1998 223

7.12.12.1 Thddim functions
Synopsis

#include <math.h>

double fdim(double x, double y);

float fdimf(float x, float y);

long double fdiml(long double x, long double y);

Description

Thefdim functions determine thgositive differencéetween their arguments:
X—-y ifx>y
+0 ifx<y

A range error may occur.

Returns

Thefdim functions return the positive difference value.
7.12.12.2 Thdmax functions

Synopsis

#include <math.h>

double fmax(double x, double y);

float fmaxf(float x, float y);

long double fmaxl(long double x, long double y);

Description
Thefmax functions determine the maximum numeric value of their argum@hts.
Returns

Thefmax functions return the maximum numeric value of their arguments.

191) NaN arguments are treated as missing data: if one argument is a NaN and the other numeric, then the
fmax functions choose the numeric value. See F.9.9.2.

7.12.12 Library 7.12.12.2

224 Committee Draft — August 3, 1998 WG14/N843

7.12.12.3 Thdmin functions
Synopsis

#include <math.h>

double fmin(double x, double y);

float fminf(float x, float y);

long double fminl(long double x, long double y);

Description

Thefmin functions determine the minimum numeric value of their arguntéfits.
Returns

Thefmin functions return the minimum numeric value of their arguments.

7.12.13 Floating multiply-add
7.12.13.1 Thdma functions
Synopsis

#include <math.h>

double fma(double x, double y, double z);

float fmaf(float x, float y, float z);

long double fmal(long double X, long double vy,
long double 2);

Description

Thefma functions compute the sumplus the product timesy, rounded as one ternary
operation: they computes the sanplus the produck timesy (as if) to infinite precision

and round once to the result format, according to the rounding mode characterized by the
value ofFLT_ROUNDS

Returns

Thefma functions return the sum plus the produck timesy, rounded as one ternary
operation.

7.12.14 Comparison macros

The relational and equality operators support the usual mathematical relationships
between numeric values. For any ordered pair of numeric values exactly one of the
relationships —less greater, andequal— is true. Relational operators may raise the
invalid exception when argument values are NaNs. For a NaN and a numeric value, or
for two NaNs, just theunorderedrelationship is trué?® The following subclauses

192) Thefmin functions are analogous to thmax functions in their treatment of NaNs.

193) IEC 60559 requires that the built-in relational operators raisgthid exception if the operands
compare unordered, as an error indicator for programs written without consideration of NaNs; the
result in these cases is false.

7.12.12.2 Library 7.12.14

WG14/N843 Committee Draft — August 3, 1998 225

provide macros that agiet(non exception raising) versions of the relational operators,
and other comparison macros that facilitate writing efficient code that accounts for NaNs
without suffering thanvalid exception. In the synopses in this subclausal-floating
indicates that the argument shall be an expression of real floating type.

7.12.14.1 Thesgreater = macro

Synopsis

#include <math.h>

int isgreater(real-floating x, real-floating y);
Description
Theisgreater macro determines whether its first argument is greater than its second
argument. The value a$greater(x,y) is always equal tgx) > (y) ; however,
unlike (x) > (y) , isgreater(x,y) does not raise thimvalid exception wherx

andy are unordered.
Returns

Theisgreater macro returns the value ¢£) > (y)

7.12.14.2 Thasgreaterequal macro
Synopsis

#include <math.h>

int isgreaterequal(real-floating x, real-floating y);
Description
Theisgreaterequal macro determines whether its first argument is greater than or
equal to its second argument. The valuesgfeaterequal(x,y) is always equal
to (x) >= (y) ; however, unlikgx) >= (y) , Isgreaterequal(x,y) does not
raise thanvalid exception whex andy are unordered.
Returns
Theisgreaterequal macro returns the value ©f) >= (y)

7.12.14 Library 7.12.14.2

226 Committee Draft — August 3, 1998 WG14/N843

7.12.14.3 Thasless macro

Synopsis

#include <math.h>

int isless(real-floating x, real-floating y);
Description
The isless macro determines whether its first argument is less than its second
argument. The value aoEless(x,y) is always equal tqx) < (y) ; however,
unlike (x) < (y) , Isless(x,y) does not raise thiavalid exception wherx andy

are unordered.

Returns

Theisless macro returns the value) < (y)
7.12.14.4 Thaslessequal macro

Synopsis
#include <math.h>
int islessequal(real-floating x, real-floating y);
Description
Theislessequal macro determines whether its first argument is less than or equal to
its second argument. The value dflessequal(x,y) is always equal to
x) <=(y) ; however, unlike(x) <= (y) , islessequal(x,y) does not raise

theinvalid exception whex andy are unordered.
Returns
Theislessequal ~ macro returns the value) <= (y)

7.12.14.5 Thaslessgreater macro
Synopsis

#include <math.h>

int islessgreater(real-floating x, real-floating y);
Description
The islessgreater macro determines whether its first argument is less than or
greater than its second argument. Télessgreater(x,y) macro is similar to
)<y 1) > () ; however,islessgreater(x,y) does not raise the
invalid exception whex andy are unordered (nor does it evaluatandy twice).
Returns
Theislessgreater macro returns the value ©f) < (y) || (X) > (y)

7.12.14.2 Library 7.12.14.5

WG14/N843 Committee Draft — August 3, 1998 227

7.12.14.6 Thasunordered macro
Synopsis

#include <math.h>
int isunordered(real-floating x, real-floating y);

Description

Theisunordered macro determines whether its arguments are unordered.
Returns

Theisunordered macro returns 1 if its arguments are unordered and O otherwise.

7.12.14.5 Library 7.12.14.6

228 Committee Draft — August 3, 1998 WG14/N843

7.13 Nonlocal jumps<setjmp.h>

The headeksetjmp.h> defines the macreetimp , and declares one function and
one type, for bypassing the normal function call and return discipifhe.

The type declared is
jmp_buf

which is an array type suitable for holding the information needed to restore a calling
environment.

It is unspecified whethesetimp is a macro or an identifier declared with external
linkage. If a macro definition is suppressed in order to access an actual function, or a
program defines an external identifier with the naetgmp , the behavior is undefined.

7.13.1 Save calling environment
7.13.1.1 Thesetimp macro
Synopsis

#include <setjmp.h>
int setjmp(jmp_buf env);

Description

Thesetjimp macro saves its calling environment injitgp_buf argument for later use
by thelongjmp function.

Returns

If the return is from a direct invocation, teetjmp macro returns the value zero. If the
return is from a call to theongjmp function, thesetimp macro returns a nonzero
value.

Environmental limits
An invocation of thesetjimp macro shall appear only in one of the following contexts:
— the entire controlling expression of a selection or iteration statement;

— one operand of a relational or equality operator with the other operand an integer
constant expression, with the resulting expression being the entire controlling
expression of a selection or iteration statement;

— the operand of a unary operator with the resulting expression being the entire
controlling expression of a selection or iteration statement; or

— the entire expression of an expression statement (possibly vasd td.

194) These functions are useful for dealing with unusual conditions encountered in a low-level function of
a program.

7.13 Library 7.13.1.1

WG14/N843 Committee Draft — August 3, 1998 229

If the invocation appears in any other context, the behavior is undefined.
7.13.2 Restore calling environment

7.13.2.1 Thdongjmp function

Synopsis

#include <setjmp.h>
void longjmp(jmp_buf env, int val);

Description

Thelongjmp function restores the environment saved by the most recent invocation of
the setimp macro in the same invocation of the program with the corresponding
jmp_buf argument. If there has been no such invocation, or if the function containing
the invocation of theetjimp macro has terminated executté® in the interim, or if the
invocation of thesetimp macro was within the scope of an identifier with variably
modified type and execution has left that scope in the interim, the behavior is undefined.

All accessible objects have values as of the tongjmp was called, except that the
values of objects of automatic storage duration that are local to the function containing
the invocation of the correspondisgtimp macro that do not have volatile-qualified
type and have been changed betweens#ignp invocation andongjmp call are
indeterminate.

Returns

After longimp is completed, program execution continues as if the corresponding
invocation of thesetimp macro had just returned the value specifiedvlly . The
longjmp function cannot cause tleetjimp macro to return the value O;vhl is O,
thesetjimp macro returns the value 1.

EXAMPLE Thelongjmp function that returns control back to the point of #efjmp invocation
might cause memory associated with a variable length array object to be squandered.

195) For example, by executingraturn statement or because anotthengjmp call has caused a
transfer to aetjmp invocation in a function earlier in the set of nested calls.

7.13.1.1 Library 7.13.2.1

230 Committee Draft — August 3, 1998 WG14/N843

#include <setjmp.h>
jmp_buf buf;

void g(int n);

void h(int n);

intn =6;

void f(void)
{

int x[n]; 1 OK, f is not terminated.
setjmp(buf);
g(n);

}

void g(int n)
{

int a[n]; Ila may remain allocated.
h(n);

}

void h(int n)

int b[n]; II'b may remain allocated.
longjmp(buf,2); // might cause memory loss.

7.13.2.1 Library 7.13.2.1

WG14/N843 Committee Draft — August 3, 1998 231

7.14 Signal handling<signal.h>

The headeksignal.h> declares a type and two functions and defines several macros,
for handling variousignals(conditions that may be reported during program execution).

The type defined is
sig_atomic_t

which is the (possibly volatile-qualified) integer type of an object that can be accessed as
an atomic entity, even in the presence of asynchronous interrupts.

The macros defined are

SIG_DFL
SIG_ERR
SIG_IGN

which expand to constant expressions with distinct values that have type compatible with
the second argument to, and the return value ofigmal function, and whose values
compare unequal to the address of any declarable function; and the following, which
expand to positive integer constant expressions withitgpeand distinct values that are

the signal numbers, each corresponding to the specified condition:

SIGABRT abnormal termination, such as is initiated bydbert function

SIGFPE an erroneous arithmetic operation, such as zero divide or an operation
resulting in overflow

SIGILL detection of an invalid function image, such as an invalid instruction
SIGINT receipt of an interactive attention signal

SIGSEGYV an invalid access to storage

SIGTERM a termination request sent to the program

An implementation need not generate any of these signals, except as a result of explicit
calls to theraise function. Additional signals and pointers to undeclarable functions,
with macro definitions beginning, respectively, with the let®®i& and an uppercase
letter or with SIG_ and an uppercase lettéf) may also be specified by the
implementation. The complete set of signals, their semantics, and their default handling
is implementation-defined; all signal numbers shall be positive.

196) See “future library directions” (7.26.9). The names of the signal numbers reflect the following terms
(respectively): abort, floating-point exception, illegal instruction, interrupt, segmentation violation,
and termination.

7.14 Library 7.14

232 Committee Draft — August 3, 1998 WG14/N843

7.14.1 Specify signal handling
7.14.1.1 Thesignal function
Synopsis

#include <signal.h>
void (*signal(int sig, void (*func)(int)))(int);

Description

Thesignal function chooses one of three ways in which receipt of the signal number
sig is to be subsequently handled. If the valuduoic is SIG_DFL, default handling

for that signal will occur. If the value dinc is SIG_IGN, the signal will be ignored.
Otherwise,func shall point to a function to be called when that signal occurs. An
invocation of such a function because of a signal, or (recursively) of any further functions
called by that invocation (other than functions in the standard library), is cadigaa
handler.

When a signal occurs arfdnc points to a function, it is implementation-defined
whether the equivalent ofsignal(sig, SIG_DFL); Is executed or the
implementation prevents some implementation-defined set of signals (at least including
sig) from occurring until the current signal handling has completed; in the case of
SIGILL , the implementation may alternatively define that no action is taken. Then the
equivalent of(*func)(sig); is executed. If and when the function returns, if the
value ofsig is SIGFPE, SIGILL , SIGSEGV or any other implementation-defined
value corresponding to a computational exception, the behavior is undefined; otherwise
the program will resume execution at the point it was interrupted.

If the signal occurs as the result of calling #i®rt or raise function, the signal
handler shall not call theaise function.

If the signal occurs other than as the result of callingbioet or raise function, the
behavior is undefined if the signal handler refers to any object with static storage duration
other than by assigning a value to an object declaredlasle sig_atomic_t ,or

the signal handler calls any function in the standard library other thambibre

function or thesignal function with the first argument equal to the signal number
corresponding to the signal that caused the invocation of the handler. Furthermore, if
such a call to theignal function results in &1G_ERRreturn, the value oérrno is
indeterminate®”)

At program startup, the equivalent of
signal(sig, SIG_IGN);

may be executed for some signals selected in an implementation-defined manner; the
equivalent of

197) If any signal is generated by an asynchronous signal handler, the behavior is undefined.

7.14.1 Library 7.14.1.1

WG14/N843 Committee Draft — August 3, 1998 233

signal(sig, SIG_DFL);
is executed for all other signals defined by the implementation.
The implementation shall behave as if no library function callsitheal function.
Returns

If the request can be honored, 8ignal function returns the value déinc for the
most recent successful calldignal for the specified signaig . Otherwise, a value of
SIG_ERRIs returned and a positive value is storednmo .

Forward references: theabort function (7.20.4.1), thexit function (7.20.4.3).
7.14.2 Send signal

7.14.2.1 Theaise function

Synopsis

#include <signal.h>
int raise(int sig);

Description

Theraise function carries out the actions described in 7.14.1.1 for the sgnallf a
signal handler is called, thhaise function shall not return until after the signal handler
does.

Returns

Theraise function returns zero if successful, nonzero if unsuccessful.

7.14.1.1 Library 7.14.2.1

234 Committee Draft — August 3, 1998 WG14/N843

7.15 Variable arguments<stdarg.h>

The headerxstdarg.h> declares a type and defines four macros, for advancing
through a list of arguments whose number and types are not known to the called function
when it is translated.

A function may be called with a variable number of arguments of varying types. As
described in 6.9.1, its parameter list contains one or more parameters. The rightmost
parameter plays a special role in the access mechanism, and will be despgnaitsdch

this description.

The type declared is
va_list

which is an object type suitable for holding information needed by the macros
va start ,va_arg , va_end, andva _copy . If access to the varying arguments is
desired, the called function shall declare an object (referred ap &s this subclause)
having typeva_list . The objectap may be passed as an argument to another function;
if that function invokes the&a_arg macro with parameteap, the value ofap in the
calling function is indeterminate and shall be passed tedahend macro prior to any
further reference tap.1%®

7.15.1 Variable argument list access macros

Theva_start , va_arg , andva_copy macros described in this subclause shall be
implemented as macros, not functions. It is unspecified whethend is a macro or

an identifier declared with external linkage. If a macro definition is suppressed in order
to access an actual function, or a program defines an external identifier with the name
va_end , the behavior is undefined. Each invocation of vhestart or va_copy

macros shall be matched by a corresponding invocation ofahend macro in the
function accepting a varying number of arguments.

198) It is permitted to create a pointer toa list and pass that pointer to another function, in which
case the original function may make further use of the original list after the other function returns.

7.15 Library 7.15.1

WG14/N843 Committee Draft — August 3, 1998 235

7.15.1.1 Theva_arg macro
Synopsis

#include <stdarg.h>

type va_arg(va_list ap, type;
Description

Theva_arg macro expands to an expression that has the specified type and the value of
the next argument in the call. The paramejershall be the same as tha list ap
initialized byva_start . Each invocation ofa_arg modifiesap so that the values of
successive arguments are returned in turn. The paratypgshall be a type name
specified such that the type of a pointer to an object that has the specified type can be
obtained simply by postfixing*ato type If there is no actual next argument, otyipeis

not compatible with the type of the actual next argument (as promoted according to the
default argument promotions), the behavior is undefined, except for the following cases:

— one type is a signed integer type, the other type is the corresponding unsigned integer
type, and the value is representable in both types;

— one type is pointer to void and the other is a pointer to a character type.
Returns

The first invocation of thea_arg macro after that of thea_start macro returns the
value of the argument after that specifiedpaymN. Successive invocations return the
values of the remaining arguments in succession.

7.15.1.2 Theva_copy macro
Synopsis

#include <stdarg.h>
void va_copy(va_list dest, va_list src);

Description

Theva _copy macro makes thea list dest be a copy of thea list src , as if
theva_start macro had been applied to it followed by the same sequence of uses of
theva_arg macro as had previously been used to reach the present sate of

Returns

Theva_copy macro returns no value.

7.15.1 Library 7.15.1.2

236 Committee Draft — August 3, 1998 WG14/N843

7.15.1.3 Theva_end macro
Synopsis
#include <stdarg.h>
void va_end(va_list ap);
Description

The va_end macro facilitates a normal return from the function whose variable
argument list was referred to by the expansionvafstart that initialized the
va_list ap. Theva_end macro may modifyap so that it is no longer usable (without
an intervening invocation ofa_start). If there is no corresponding invocation of the
va_start macro, or if theva_end macro is not invoked before the return, the
behavior is undefined.

Returns

Theva_end macro returns no value.
7.15.1.4 Theva _start macro
Synopsis

#include <stdarg.h>
void va_start(va_list ap, parmN);

Description
Theva_start macro shall be invoked before any access to the unnamed arguments.

The va_start macro initializesap for subsequent use bya _arg andva_end .
va_start shall not be invoked again for the saapewithout an intervening invocation
of va_end for the samap.

The parameteparmN is the identifier of the rightmost parameter in the variable
parameter list in the function definition (the one just before the). If the parameter
parmNis declared with theegister storage class, with a function or array type, or
with a type that is not compatible with the type that results after application of the default
argument promotions, the behavior is undefined.

Returns

Theva_start macro returns no value.

EXAMPLE The functionfl gathers into an array a list of arguments that are pointers to strings (but not
more tharMAXARG@&rguments), then passes the array as a single argument to fdiactibime number of
pointers is specified by the first argumentito

#include <stdarg.h>
#define MAXARGS 31

7.15.1.2 Library 7.15.1.4

WG14/N843 Committee Draft — August 3, 1998 237

void fi(int n_ptrs, ...)

{
va_list ap;
char *array[MAXARGS];
int ptr_no =0;

if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS;
va_start(ap, n_ptrs);
while (ptr_no < n_ptrs)
array[ptr_no++] = va_arg(ap, char *);
va_end(ap);
f2(n_ptrs, array);
}

Each call tdl shall have visible the definition of the function or a declaration such as
void fi(int, ...);

The functionf3 is similar, but saves the status of the variable argument list after the indicated number of
arguments; aftef2 has been called once with the whole list, the trailing part of the list is gathered again
and passed to functidd .

#include <stdarg.h>
#define MAXARGS 31

void f3(int n_ptrs, int f4_after, ...)
{
va_list ap, ap_save;
char *array[MAXARGS];
int ptr_no =0;
if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS,;
va_start(ap, n_ptrs);
while (ptr_no < n_ptrs) {
array[ptr_no++] = va_arg(ap, char *);
if (ptr_no == f4_after)
va_copy(ap_save, ap);
}
va_end(ap);
f2(n_ptrs, array);

/I Now process the saved copy.

n_ptrs -=f4_after;
ptr_no =0;
while (ptr_no < n_ptrs)
array[ptr_no++] = va_arg(ap_save, char *);
va_end(ap_save);
f4(n_ptrs, array);

7.15.1.4 Library 7.15.1.4

238 Committee Draft — August 3, 1998 WG14/N843

7.16 Boolean type and valuesstdbool.h>
The headexstdbool.h> defines four macros.
The macro

bool
expands to Bool .

The remaining three macros are suitable for ugéfin preprocessing directives. They
are

true

which expands to the decimal constant 1,
false

which expands to the decimal constant 0, and
__bool_true false _are defined

which expands to the decimal constant 1.

Notwithstanding the provisions of 7.1.3, a program is permitted to undefine and perhaps
then redefine the macrbsol , true , andfalse .19

199) See “future library directions” (7.26.7).

7.16 Library 7.16

WG14/N843 Committee Draft — August 3, 1998 239

7.17 Common definitions<stddef.h>

The following types and macros are defined in the standard hestiddef.n> . Some
are also defined in other headers, as noted in their respective subclauses.

The types are
ptrdiff_t

which is the signed integer type of the result of subtracting two pointers;
size t

which is the unsigned integer type of the result osiheof operator; and
wchar_t

which is an integer type whose range of values can represent distinct codes for all
members of the largest extended character set specified among the supported locales; the
null character shall have the code value zero and each member of the basic character set
defined in 5.2.1 shall have a code value equal to its value when used as the lone character
in an integer character constant.

The macros are
NULL

which expands to an implementation-defined null pointer constant; and
offsetof(type member-designatpr

which expands to an integer constant expression that hasiagd , the value of
which is the offset in bytes, to the structure member (designatetimper-designatdy
from the beginning of its structure (designatedypg). The type and member designator
shall be such that given

static type t;

then the expressiofi(t. member-designatdrevaluates to an address constant. (If the
specified member is a bit-field, the behavior is undefined.)

Forward references: localization (7.11).

7.17 Library 7.17

240 Committee Draft — August 3, 1998 WG14/N843

7.18 Integer types<stdint.h>

The headekstdint.h> declares sets of integer types having specified widths, and
defines corresponding sets of maci®®. It also defines macros that specify limits of
integer types corresponding to types defined in other standard headers.

Types are defined in the following categories:

— integer types having certain exact widths;

— integer types having at least certain specified widths;

— fastest integer types having at least certain specified widths;
— integer types wide enough to hold pointers to objects;

— integer types having greatest width.

(Some of these types may denote the same type.)

Corresponding macros specify limits of the declared types and construct suitable
constants.

For each type described herein that can be declared as a type existing in the
implementatiorf®? <stdint.h> shall declare that type, and it shall define the
associated macros. Conversely, for each type described herein that cannot be declared as
a type existing in the implementatiorstdint.h> shall not define that type, nor shall

it define the associated macros.

7.18.1 Integer types

When type names differing only in the absence or presence of the undtral defined,
they shall denote corresponding signed and unsigned types as described in 6.2.5.

7.18.1.1 Exact-width integer types

Each of the following types designates an integer type that has exactly the specified
width. These type names have the general formtofn_t oruint n_t wherenis the
required width. For examplegyint8_t denotes an unsigned integer type that has a
width of exactly 8 bits.

The following designate exact-width signed integer types:

int8 t intl6 t int32_t int64_t
The following designate exact-width unsigned integer types:
uint8 _t uintl6_t uint32_t uinté4_t

(These types need not exist in an implementation.)

200) See “future library directions” (7.26.8).

201) Some of these types may denote implementation-defined extended integer types.

7.18 Library 7.18.1.1

WG14/N843 Committee Draft — August 3, 1998 241

7.18.1.2 Minimum-width integer types

Each of the following types designates an integer type that has at least the specified
width, such that no integer type of lesser size has at least the specified width. These type
names have the general formiof least n_t oruint least n_t wherenis the
minimum required width. For examplet_least32_t denotes a signed integer type

that has a width of at least 32 bits.

The following designate minimum-width signed integer types:

int_least8 t int_least32_t
int_leastl16 _t int_least64 _t

The following designate minimum-width unsigned integer types:
uint_least8 _t uint_least32_t
uint_least16 _t uint_least64 t

(These types exist in all implementations.)
7.18.1.3 Fastest minimum-width integer types

Each of the following types designates an integer type that is usually¥$testperate

with among all integer types that have at least the specified width. These type names
have the general form afit fast n_t oruint_ fast n_t wheren is the minimum
required width. For examplent fastl6 t denotes the fastest signed integer type
that has a width of at least 16 bits.

The following designate fastest minimum-width signed integer types:

int_fast8 t int_fast32_t
int_fast16 _t int_fast64 _t
The following designate fastest minimum-width unsigned integer types:
uint_fast8 _t uint_fast32_t
uint_fast16 _t uint_fast64 t

(These types exist in all implementations.)
7.18.1.4 Integer types capable of holding object pointers

The following type designates a signed integer type with the property that any valid
pointer tovoid can be converted to this type, then converted back to pointeido,
and the result will compare equal to the original pointer:

intptr_t

The following type designates an unsigned integer type with the property that any valid
pointer tovoid can be converted to this type, then converted back to point&ido,

202) The designated type is not guaranteed to be fastest for all purposes; if the implementation has no clear
grounds for choosing one type over another, it will simply pick some integer type satisfying the
signedness and width requirements.

7.18.1.2 Library 7.18.1.4

242 Committee Draft — August 3, 1998 WG14/N843

and the result will compare equal to the original pointer:
uintptr_t

(These types need not exist in an implementation.)

7.18.1.5 Greatest-width integer types

The following type designates a signed integer type capable of representing any value of
any signed integer type:

intmax_t

The following type designates an unsigned integer type capable of representing any value
of any unsigned integer type:

uintmax_t
(These types exist in all implementations.)

7.18.2 Limits of specified-width integer types

The following object-like macré8® specify the minimum and maximum limits of the
types declared imstdint.h> . Each macro name corresponds to a similar type name in
7.18.1.

Each instance of any defined macro shall be replaced by a constant expression suitable
for use in#if preprocessing directives, and this expression shall have the same type as
would an expression that is an object of the corresponding type converted according to
the integer promotions. Its implementation-defined value shall be equal to or greater in
magnitude (absolute value) than the corresponding value given below, with the same sign.

7.18.2.1 Limits of exact-width integer types

— minimum values of exact-width signed integer types

INT8_MIN -127
INT16_MIN -32767
INT32_MIN —-2147483647
INT64_MIN —9223372036854775807

(The value shall be either that given or exactly 1 less.)
— maximum values of exact-width signed integer types

INT8_MAX +127
INT16_MAX +32767
INT32_MAX +2147483647

INT64_MAX +9223372036854 775807

(The value shall be exactly that given.)

203) C++ implementations should define these macros only wh&TDC_LIMIT_MACROSSs defined
before<stdint.h> is included.

7.18.1.4 Library 7.18.2.1

WG14/N843 Committee Draft — August 3, 1998

— maximum values of exact-width unsigned integer types

UINT8_MAX 255
UINT16_MAX 65535
UINT32_MAX 4294967295

UINT64_MAX 18446744073709551615

(The value shall be exactly that given.)
7.18.2.2 Limits of minimum-width integer types
— minimum values of minimum-width signed integer types

INT_LEAST8_MIN =127
INT_LEAST16_MIN -32767
INT_LEAST32_MIN —2147483647
INT_LEAST64_MIN -9223372036854775807
— maximum values of minimum-width signed integer types

INT_LEAST8_MAX +127
INT_LEAST16_MAX +32767
INT_LEAST32_MAX +2147483647

INT_LEAST64_MAX +9223372036854775807

— maximum values of minimum-width unsigned integer types

UINT_LEAST8_MAX 255
UINT_LEAST16 MAX 65535
UINT_LEAST32_MAX 4294967295

UINT_LEAST64 _MAX 18446744073709551615
7.18.2.3 Limits of fastest minimum-width integer types

— minimum values of fastest minimum-width signed integer types

INT_FAST8_MIN -127
INT_FAST16_MIN -32767
INT_FAST32_MIN -2147483647
INT_FAST64 MIN -9223372036854775807
— maximum values of fastest minimum-width signed integer types

INT_FAST8 MAX +127
INT_FAST16_MAX +32767
INT_FAST32 _MAX +2147483647
INT_FAST64 MAX +9223372036854775807

— maximum values of fastest minimum-width unsigned integer types

7.18.2.1 Library

243

7.18.2.3

244 Committee Draft — August 3, 1998 WG14/N843

UINT_FAST8_MAX 255
UINT_FAST16_MAX 65535
UINT_FAST32_MAX 4294967295

UINT_FAST64_MAX 18446744073709551615
7.18.2.4 Limits of integer types capable of holding object pointers
— minimum value of pointer-holding signed integer type

INTPTR_MIN -32767
— maximum value of pointer-holding signed integer type

INTPTR_MAX +32767
— maximum value of pointer-holding unsigned integer type

UINTPTR_MAX 65535
7.18.2.5 Limits of greatest-width integer types
— minimum value of greatest-width signed integer type

INTMAX_MIN —-9223372036854775807
— maximum value of greatest-width signed integer type

INTMAX_MAX +9223372036854775807
— maximum value of greatest-width unsigned integer type

UINTMAX_MAX 18446744073709551615

7.18.3 Limits of other integer types

The following object-like macré8® specify the minimum and maximum limits of
integer types corresponding to types defined in other standard headers.

Each instance of these macros shall be replaced by a constant expression suitable for use
in #if preprocessing directives, and this expression shall have the same type as would an
expression that is an object of the corresponding type converted according to the integer
promotions. Its implementation-defined value shall be equal to or greater in magnitude
(absolute value) than the corresponding value given below, with the same sign.

— limits of ptrdiff_t

PTRDIFF_MIN -65535

PTRDIFF_MAX +65535
— limits of sig_atomic_t

SIG_ATOMIC_MIN see below

SIG_ATOMIC_MAX see below

204) C++ implementations should define these macros only wh&TDC_LIMIT_MACROSSs defined
before<stdint.h> is included.

7.18.2.3 Library 7.18.3

WG14/N843 Committee Draft — August 3, 1998 245

— limit of size_t
SIZE_MAX 65535
— limits of wchar _t
WCHAR_MIN see below
WCHAR_MAX see below
— limits of wint_t
WINT_MIN see below
WINT_MAX see below
If sig_atomic_t (see 7.14) is defined as a signed integer type, the value of

SIG_ATOMIC_MINsshall be no greater than —127 and the valugl&f ATOMIC _MAX
shall be no less than 127; otherwisig,_atomic_t is defined as an unsigned integer
type, and the value ofSIG_ATOMIC MIN shall be 0 and the value of
SIG_ATOMIC_MAXshall be no less than 255.

If wchar_t is defined as a signed integer type, the valu&/GHAR_MiINhall be no
greater than -127 and the valueWECHAR_MA3hall be no less than 127; otherwise,
wchar_t is defined as an unsigned integer type, and the valWGHAR_MiNhall be

0 and the value dNCHAR_MAstall be no less than 255.

If wint_ t (see 7.25) is defined as a signed integer type, the vaM&NT_MIN shall
be no greater than —32767 and the valudMdNT_MAXshall be no less than 32767;
otherwisewint_t is defined as an unsigned integer type, and the valWdNT_MIN
shall be 0 and the value WINT_MAXshall be no less than 65535.

7.18.4 Macros for integer constants

The following function-like macrd8® expand to integer constants suitable for
initializing objects that have integer types corresponding to types defined in
<stdint.h> . Each macro name corresponds to a similar type name in 7.18.1.2 or
7.18.1.5.

The argument in any instance of these macros shall be a decimal, octal, or hexadecimal
constant (as defined in 6.4.4.1) with a value that does not exceed the limits for the
corresponding type.

7.18.4.1 Macros for minimum-width integer constants

Each of the following macros expands to an integer constant having the value specified
by its argument and a type with at least the specified width. These macro names have the
general form ofINTn_C or UINTn_C wheren is the minimum required width. For
example UINT64_C(0x123) might expand to the integer constari23ULL .

205) C++ implementations should define these macros only wh&TDC _CONSTANT_MACR@S
defined beforestdint.h> is included.

7.18.3 Library 7.18.4.1

246 Committee Draft — August 3, 1998 WG14/N843

The following expand to integer constants that have signed integer types:

INT8_C(valug INT32_C(valueg
INT16_C(value INT64_C(value
The following expand to integer constants that have unsigned integer types:
UINT8_C(valug UINT32_C(value
UINT16_C(valug UINT64_C(valug

7.18.4.2 Macros for greatest-width integer constants

The following macro expands to an integer constant having the value specified by its
argument and the typetmax_t

INTMAX_C(value

The following macro expands to an integer constant having the value specified by its
argument and the typentmax_t

UINTMAX_C(value

7.18.4.1 Library 7.18.4.2

WG14/N843 Committee Draft — August 3, 1998 247

7.19 Input/output <stdio.h>

7.19.1 Introduction

The headekstdio.h> declares three types, several macros, and many functions for
performing input and output.

The types declared aseze t (described in 7.17);
FILE

which is an object type capable of recording all the information needed to control a
stream, including its file position indicator, a pointer to its associated buffer (if any), an
error indicator that records whether a read/write error has occurred, amedrof-file
indicator that records whether the end of the file has been reached; and

fpos_t

which is an object type other than an array type capable of recording all the information
needed to specify uniquely every position within a file.

The macros aldULL (described in 7.17);

_IOFBF
_IOLBF
_IONBF

which expand to integer constant expressions with distinct values, suitable for use as the
third argument to theetvbuf function;

BUFSIZ

which expands to an integer constant expression, which is the size of the buffer used by
thesetbuf function;

EOF

which expands to an integer constant expression, withingpeand a negative value, that
is returned by several functions to indicated-of-file that is, no more input from a
stream;

FOPEN_MAX

which expands to an integer constant expression that is the minimum number of files that
the implementation guarantees can be open simultaneously;

FILENAME_MAX

which expands to an integer constant expression that is the size needed for an array of
char large enough to hold the longest file name string that the implementation
guarantees can be operfé®;

L_tmpnam

which expands to an integer constant expression that is the size needed for an array of
char large enough to hold a temporary file name string generated bymfhream

7.19 Library 7.19.1

248 Committee Draft — August 3, 1998 WG14/N843

function;

SEEK_CUR
SEEK_END
SEEK_SET

which expand to integer constant expressions with distinct values, suitable for use as the
third argument to théseek function;

TMP_MAX

which expands to an integer constant expression that is the minimum number of unique
file names that can be generated byttlgnam function;

stderr
stdin
stdout

which are expressions of type “pointer EILE ” that point to the FILE objects
associated, respectively, with the standard error, input, and output streams.

The headexkwchar.h> declares a number of functions useful for wide-character input
and output. The wide-character input/output functions described in that subclause
provide operations analogous to most of those described here, except that the
fundamental units internal to the program are wide characters. The external
representation (in the file) is a sequence of “generalized” multibyte characters, as
described further in 7.19.3.

The input/output functions are given the following collective terms:

— Thewide-character input functions- those functions described in 7.24 that perform
input into wide characters and wide strinfgetwc , fgetws , getwc , getwchar
fwscanf ,wscanf ,vfwscanf ,andvwscanf .

— The wide-character output functions— those functions described in 7.24 that
perform output from wide characters and wide strirfigstwc , fputws , putwc ,
putwchar , fwprintf , wprintf , vfwprintf , andvwprintf

— The wide-character input/output functions- the union of theungetwc function,
the wide-character input functions, and the wide-character output functions.

— The byte input/output functions— those functions described in this subclause that

perform input/output: fgetc , fgets , fprintf , fputc , fputs , fread |,
fscanf , fwrite , getc , getchar , gets , printf , putc , putchar , puts ,
scanf , ungetc , vfprintf , Viscanf , vprintf | andvscanf .

206) If the implementation imposes no practical limit on the length of file name strings, the value of
FILENAME_MAXshould instead be the recommended size of an array intended to hold a file hame
string. Of course, file name string contents are subject to other system-specific constraints; therefore
all possible strings of lengfRILENAME_MAXannot be expected to be opened successfully.

7.19.1 Library 7.19.1

WG14/N843 Committee Draft — August 3, 1998 249

Forward references: files (7.19.3), thdseek function (7.19.9.2), streams (7.19.2), the
tmpnam function (7.19.4.4)swchar.h> (7.24).

7.19.2 Streams

Input and output, whether to or from physical devices such as terminals and tape drives,
or whether to or from files supported on structured storage devices, are mapped into
logical datastreams whose properties are more uniform than their various inputs and
outputs. Two forms of mapping are supported, fext streamsand for binary
streams”®’

A text stream is an ordered sequence of characters composelinggoeach line
consisting of zero or more characters plus a terminating new-line character. Whether the
last line requires a terminating new-line character is implementation-defined. Characters
may have to be added, altered, or deleted on input and output to conform to differing
conventions for representing text in the host environment. Thus, there need not be a one-
to-one correspondence between the characters in a stream and those in the external
representation. Data read in from a text stream will necessarily compare equal to the data
that were earlier written out to that stream only if: the data consist only of printable
characters and the control characters horizontal tab and new-line; no new-line character is
immediately preceded by space characters; and the last character is a new-line character.
Whether space characters that are written out immediately before a new-line character
appear when read in is implementation-defined.

A binary stream is an ordered sequence of characters that can transparently record
internal data. Data read in from a binary stream shall compare equal to the data that were
earlier written out to that stream, under the same implementation. Such a stream may,
however, have an implementation-defined number of null characters appended to the end
of the stream.

Each stream has amientation After a stream is associated with an external file, but
before any operations are performed on it, the stream is without orientation. Once a
wide-character input/output function has been applied to a stream without orientation, the
stream becomeswide-oriented streamSimilarly, once a byte input/output function has
been applied to a stream without orientation, the stream becobyts-ariented stream

Only a call to thefreopen function or thefwide function can otherwise alter the
orientation of a stream. (A successful calfreopen removes any orientatiod%)

Byte input/output functions shall not be applied to a wide-oriented stream and wide-

character input/output functions shall not be applied to a byte-oriented stream. The
remaining stream operations do not affect, and are not affected by, a stream’s orientation,
except for the following additional restrictions:

207) An implementation need not distinguish between text streams and binary streams. In such an
implementation, there need be no new-line characters in a text stream nor any limit to the length of a
line.

208) The three predefined streastdin , stdout , andstderr are unoriented at program startup.

7.19.1 Library 7.19.2

250 Committee Draft — August 3, 1998 WG14/N843

— Binary wide-oriented streams have the file-positioning restrictions ascribed to both
text and binary streams.

— For wide-oriented streams, after a successful call to a file-positioning function that
leaves the file position indicator prior to the end-of-file, a wide-character output
function can overwrite a partial multibyte character; any file contents beyond the
byte(s) written are henceforth indeterminate.

Each wide-oriented stream has an associaestate t object that stores the current
parse state of the stream. A successful cafb&tpos stores a representation of the
value of thismbstate_t object as part of the value of tifigos t object. A later
successful call tdsetpos using the same storddos_t value restores the value of
the associatethbstate_t object as well as the position within the controlled stream.

Environmental limits

An implementation shall support text files with lines containing at least 254 characters,
including the terminating new-line character. The value of the nBldf51Z shall be at
least 256.

Forward references: thefreopen function (7.19.5.4), théwide function (7.24.3.5),
mbstate_t (7.25.1), thefgetpos function (7.19.9.1), thefsetpos function
(7.19.9.3).

7.19.3 Files

A stream is associated with an external file (which may be a physical deviopgting

a file, which may involvereatinga new file. Creating an existing file causes its former
contents to be discarded, if necessary. If a file can support positioning requests (such as a
disk file, as opposed to a terminal), theffila position indicatorassociated with the
stream is positioned at the start (character number zero) of the file, unless the file is
opened with append mode in which case it is implementation-defined whether the file
position indicator is initially positioned at the beginning or the end of the file. The file
position indicator is maintained by subsequent reads, writes, and positioning requests, to
facilitate an orderly progression through the file.

Binary files are not truncated, except as defined in 7.19.5.3. Whether a write on a text
stream causes the associated file to be truncated beyond that point is implementation-
defined.

When a stream ignbuffered characters are intended to appear from the source or at the
destination as soon as possible. Otherwise characters may be accumulated and
transmitted to or from the host environment as a block. When a strdalty isuffered
characters are intended to be transmitted to or from the host environment as a block when
a buffer is filed. When a stream ime buffered characters are intended to be
transmitted to or from the host environment as a block when a new-line character is
encountered. Furthermore, characters are intended to be transmitted as a block to the host
environment when a buffer is filled, when input is requested on an unbuffered stream, or
when input is requested on a line buffered stream that requires the transmission of
characters from the host environment. Support for these characteristics is

7.19.2 Library 7.19.3

10

11

WG14/N843 Committee Draft — August 3, 1998 251

implementation-defined, and may be affected viss#tbuf andsetvbuf functions.

A file may be disassociated from a controlling streamlbgingthe file. Output streams

are flushed (any unwritten buffer contents are transmitted to the host environment) before
the stream is disassociated from the file. The value of a pointef~tbEa object is
indeterminate after the associated file is closed (including the standard text streams).
Whether a file of zero length (on which no characters have been written by an output
stream) actually exists is implementation-defined.

The file may be subsequently reopened, by the same or another program execution, and
its contents reclaimed or modified (if it can be repositioned at its start). e

function returns to its original caller, or if thexit function is called, all open files are
closed (hence all output streams are flushed) before program termination. Other paths to
program termination, such as calling thbort function, need not close all files

properly.
The address of thHelLE object used to control a stream may be significant; a copy of a
FILE object need not serve in place of the original.

At program startup, three text streams are predefined and need not be opened explicitly
— standard input (for reading conventional input)standard output(for writing
conventional output), andtandard error (for writing diagnostic output). As initially
opened, the standard error stream is not fully buffered; the standard input and standard
output streams are fully buffered if and only if the stream can be determined not to refer
to an interactive device.

Functions that open additional (nontemporary) files requite aame which is a string.
The rules for composing valid file names are implementation-defined. Whether the same
file can be simultaneously open multiple times is also implementation-defined.

Although both text and binary wide-oriented streams are conceptually sequences of wide
characters, the external file associated with a wide-oriented stream is a sequence of
multibyte characters, generalized as follows:

— Multibyte encodings within files may contain embedded null bytes (unlike multibyte
encodings valid for use internal to the program).

— A file need not begin nor end in the initial shift St

Moreover, the encodings used for multibyte characters may differ among files. Both the
nature and choice of such encodings are implementation-defined.

The wide-character input functions read multibyte characters from the stream and convert
them to wide characters as if they were read by successive callsfgetihe function.

Each conversion occurs as if by a call tortif@towc function, with the conversion state
described by the stream’s ownbstate t object. The byte input functions read
characters from the stream as if by successive calls fgate function.

209) Setting the file position indicator to end-of-file, as wghek(file, 0, SEEK_END) , has
undefined behavior for a binary stream (because of possible trailing null characters) or for any stream
with state-dependent encoding that does not assuredly end in the initial shift state.

7.19.3 Library 7.19.3

12

13

14

15

252 Committee Draft — August 3, 1998 WG14/N843

The wide-character output functions convert wide characters to multibyte characters and
write them to the stream as if they were written by successive calls tputvec

function. Each conversion occurs as if by a call towhetomb function, with the
conversion state described by the stream’s ownstate t object. The byte output
functions write characters to the stream as if by successive callsfputtie function.

In some cases, some of the byte input/output functions also perform conversions between
multibyte characters and wide characters. These conversions also occur as if by calls to
thembrtowc andwcrtomb functions.

An encoding error occurs if the character sequence presented to the underlying
mbrtowc function does not form a valid (generalized) multibyte character, or if the code
value passed to the underlyimgrtomb does not correspond to a valid (generalized)
multibyte character. The wide-character input/output functions and the byte input/output
functions store the value of the maé&ithSEQ in errno if and only if an encoding error
occurs.

Environmental limits

The value ofFOPEN_MAXshall be at least eight, including the three standard text
streams.

Forward references: theexit function (7.20.4.3), thégetc function (7.19.7.1), the
fopen function (7.19.5.3), thefputc function (7.19.7.3), thesetbuf function
(7.19.5.5), thesetvbuf function (7.19.5.6), thefgetwc function (7.24.3.1), the
fputwc function (7.24.3.3), conversion state (7.24.6), thebrtowc function
(7.24.6.3.2), thevcrtomb function (7.24.6.3.3).

7.19.4 Operations on files
7.19.4.1 Thaemove function
Synopsis

#include <stdio.h>
int remove(const char *filename);

Description

Theremove function causes the file whose name is the string pointed fikebgme

to be no longer accessible by that name. A subsequent attempt to open that file using that
name will fail, unless it is created anew. If the file is open, the behavior oérin@ve

function is implementation-defined.

Returns

Theremove function returns zero if the operation succeeds, nonzero if it fails.

7.19.3 Library 7.19.4.1

WG14/N843 Committee Draft — August 3, 1998 253

7.19.4.2 Thaename function
Synopsis

#include <stdio.h>
int rename(const char *old, const char *new);

Description

Therename function causes the file whose name is the string pointed ¢ddbyto be
henceforth known by the name given by the string pointed toewy. The file named
old is no longer accessible by that name. If a file named by the string pointedéa by
exists prior to the call to thename function, the behavior is implementation-defined.

Returns

Therename function returns zero if the operation succeeds, nonzero if it?f&ilfn
which case if the file existed previously it is still known by its original name.

7.19.4.3 Thampfile function
Synopsis

#include <stdio.h>
FILE *tmpfile(void);

Description

The tmpfile function creates a temporary binary file that will automatically be
removed when it is closed or at program termination. If the program terminates
abnormally, whether an open temporary file is removed is implementation-defined. The
file is opened for update withwb+" mode.

Returns

Thetmpfile function returns a pointer to the stream of the file that it created. If the file
cannot be created, thmpfile function returns a null pointer.

Forward references: thefopen function (7.19.5.3).

210) Among the reasons the implementation may caugetlaene function to fail are that the file is open
or that it is necessary to copy its contents to effectuate its renaming.

7.19.4.1 Library 7.19.4.3

254 Committee Draft — August 3, 1998 WG14/N843

7.19.4.4 Thampnam function
Synopsis

#include <stdio.h>
char *tmpnam(char *s);

Description

Thetmpnam function generates a string that is a valid file name and that is not the same
as the name of an existing fi&"

Thetmpnam function generates a different string each time it is called, Opi®_MAX
times. If it is called more thahMP_MAXimes, the behavior is implementation-defined.

The implementation shall behave as if no library function callgnipmam function.
Returns

If the argument is a null pointer, thigpnam function leaves its result in an internal
static object and returns a pointer to that object. Subsequent calls toygham
function may modify the same object. If the argument is not a null pointer, it is assumed
to point to an array of at lealst tmpnam char s; thetmpnam function writes its result

in that array and returns the argument as its value.

Environmental limits

The value of the macfBMP_MAXhall be at least 25.
7.19.5 File access functions

7.19.5.1 Theclose function

Synopsis

#include <stdio.h>
int fclose(FILE *stream);

Description

Thefclose function causes the stream pointed tosineam to be flushed and the
associated file to be closed. Any unwritten buffered data for the stream are delivered to
the host environment to be written to the file; any unread buffered data are discarded.
The stream is disassociated from the file. If the associated buffer was automatically
allocated, it is deallocated.

Returns

211) Files created using strings generated bytriinam function are temporary only in the sense that
their names should not collide with those generated by conventional naming rules for the
implementation. It is still necessary to use thmove function to renove such files when their use
is ended, and before program termination.

7.19.4.3 Library 7.19.5.1

WG14/N843 Committee Draft — August 3, 1998 255

Thefclose function returns zero if the stream was successfully closedQOé1if any
errors were detected.

7.19.5.2 Thdflush function
Synopsis

#include <stdio.h>
int fflush(FILE *stream);

Description

If stream points to an output stream or an update stream in which the most recent
operation was not input, tHush function causes any unwritten data for that stream

to be delivered to the host environment to be written to the file; otherwise, the behavior is
undefined.

If stream is a null pointer, thdflush function performs this flushing action on all
streams for which the behavior is defined above.

Returns

Thefflush function sets the error indicator for the stream and reta®isif a write
error occurs, otherwise it returns zero.

Forward references: thefopen function (7.19.5.3).
7.19.5.3 Thdopen function
Synopsis

#include <stdio.h>
FILE *fopen(const char * filename,
const char * mode);

Description

Thefopen function opens the file whose name is the string pointed fdemame
and associates a stream with it.

The argumenimode points to a string. If the string is one of the following, the file is
open in the indicated mode. Otherwise, the behavior is undéfifled.

212) If the string begins with one of theoal sequences, the implementation might choose to ignore the
remaining characters, or it might use them to select different kinds of a file (some of which might not
conform to the properties in 7.19.2).

7.19.5.1 Library 7.19.5.3

256 Committee Draft — August 3, 1998 WG14/N843

r open text file for reading

w truncate to zero length or create text file for writing

a append; open or create text file for writing at end-of-file

rb open binary file for reading

wb truncate to zero length or create binary file for writing

ab append; open or create binary file for writing at end-of-file

r+ open text file for update (reading and writing)

w+ truncate to zero length or create text file for update

a+ append; open or create text file for update, writing at end-of-file

r+b or rb+ open binary file for update (reading and writing)
w+b or wb+ truncate to zero length or create binary file for update
a+b or ab+ append; open or create binary file for update, writing at end-of-file

Opening a file with read mod&’(as the first character in timeode argument) fails if
the file does not exist or cannot be read.

Opening a file with append mod&’(as the first character in thmode argument)
causes all subsequent writes to the file to be forced to the then current end-of-file,
regardless of intervening calls to tiseek function. In some implementations, opening

a binary file with append modé&{ as the second or third character in thevallist of

mode argument values) may initially position the file position indicator for the stream
beyond the last data written, because of null character padding.

When a file is opened with update mode€ (as the second or third character in the
abovelist of mode argument values), both input and output may be performed on the
associated stream. However, output shall not be directly followed by input without an
intervening call to thefflush function or to a file positioning functionfseek ,
fsetpos , orrewind), and input shall not be directly followed by output without an
intervening call to a file positioning function, unless the input operation encounters end-
of-file. Opening (or creating) a text file with update mode may instead open (or create) a
binary stream in some implementations.

When opened, a stream is fully buffered if and only if it can be determined not to refer to
an interactive device. The error and end-of-file indicators for the stream are cleared.

Returns

Thefopen function returns a pointer to the object controlling the stream. If the open
operation failsfopen returns a null pointer.

Forward references: file positioning functions (7.19.9).

7.19.5.3 Library 7.19.5.3

WG14/N843 Committee Draft — August 3, 1998 257

7.19.5.4 Thdreopen function
Synopsis

#include <stdio.h>

FILE *freopen(const char * filename,
const char * mode,
FILE * restrict stream);

Description

Thefreopen function opens the file whose name is the string pointed fitelyame
and associates the stream pointed tetbyam with it. Themode argument is used just

as in thefopen function?®)

If filename is a null pointer, théreopen function attempts to change the mode of

the stream to that specified byode, as if the name of the file currently associated with

the stream had been used. It is implementation-defined which changes of mode are
permitted (if any), and under what circumstances.

Thefreopen function first attempts to close any file that is associated with the specified
stream. Failure to close the file is ignored. The error and end-of-file indicators for the
stream are cleared.

Returns

The freopen function returns a null pointer if the open operation fails. Otherwise,
freopen returns the value aftream .

7.19.5.5 Thesetbuf function
Synopsis

#include <stdio.h>
void setbuf(FILE * restrict stream,
char * restrict buf);

Description

Except that it returns no value, teetbuf function is equivalent to theetvbuf
function invoked with the valueslOFBF for mode andBUFSIZ for size , or (if buf
is a null pointer), with the valud ONBF for mode.

Returns
Thesetbuf function returns no value.

213) The primary use of tfeeopen function is to change the file associated with a standard text stream
(stderr ,stdin , orstdout), as those identifiers need not be modifiable Ivalues to which the value
returned by théopen function may be assigned.

7.19.5.3 Library 7.19.5.5

258 Committee Draft — August 3, 1998 WG14/N843

Forward references: thesetvbuf function (7.19.5.6).
7.19.5.6 Thesetvbuf function
Synopsis

#include <stdio.h>

int setvbuf(FILE * restrict stream,
char * restrict buf,
int mode, size_t size);

Description

Thesetvbuf function may be used only after the stream pointed tstitgam has

been associated with an open file and before any other operation (other than an
unsuccessful call tsetvbuf) is performed on the stream. The argumembde
determines howtream will be buffered, as follows: IOFBF causes input/output to be

fully buffered; IOLBF causes input/output to be line bufferedlONBF causes
input/output to be unbuffered. buf is not a null pointer, the array it points to may be
used instead of a buffer allocated by sieévbuf functiort®® and the argumersize

specifies the size of the array; otherwisge may determine the size of a buffer
allocated by thesetvbuf function. The contents of the array at any time are
indeterminate.

Returns

Thesetvbuf function returns zero on success, or nonzero if an invalid value is given
for mode or if the request cannot be honored.

7.19.6 Formatted input/output functions

The formatted input/output functicil® shall behave as if there is a sequence point after
the actions associated with each specifier.

214) The buffer has to have a lifetime at least as great as the open stream, so the stream should be closed
before a buffer that has automatic storage duration is deallocated upon block exit.

215) Theprintf functions perform writes to memory for tBenspecifier.

7.19.5.5 Library 7.19.6

WG14/N843 Committee Draft — August 3, 1998 259

7.19.6.1 Thdbprintf function
Synopsis

#include <stdio.h>
int fprintf(FILE * restrict stream,
const char * restrict format, ...);

Description

Thefprintf function writes output to the stream pointed tosbygam , under control

of the string pointed to byormat that specifies how subsequent arguments are
converted for output. If there are insufficient arguments for the format, the behavior is
undefined. If the format is exhausted while arguments remain, the excess arguments are
evaluated (as always) but are otherwise ignored. fphetf function returns when

the end of the format string is encountered.

The format shall be a multibyte character sequence, beginning and ending in its initial
shift state. The format is composed of zero or more directives: ordinary multibyte
characters (no%9, which are copied unchanged to the output stream; and conversion
specifications, each of which results in fetching zero or more subsequent arguments,
converting them, if applicable, according to the corresponding conversion specifier, and
then writing the result to the output stream.

Each conversion specification is introduced by the char@ctsiter the % the following
appear in sequence:

— Zero or moreflags (in any order) that modify the meaning of the conversion
specification.

— An optional minimuntield width If the converted value has fewer characters than the
field width, it is padded with spaces (by default) on the left (or right, if the left
adjustment flag, described later, has been given) to the field width. The field width
takes the form of an asterisk(described later) or a decimal integ&

— An optionalprecisionthat gives the minimum number of digits to appear fordthe,
0, u, X, and X conversions, the number of digits to appear after the decimal-point
character fora, A, e, E, f, andF conversions, the maximum number of significant
digits for theg and G conversions, or the maximum number of characters to be
written from a string irs conversions. The precision takes the form of a perigd (
followed either by an asterigk (described later) or by an optional decimal integer; if
only the period is specified, the precision is taken as zero. If a precision appears with
any other conversion specifier, the behavior is undefined.

— An optionallength modifietthat specifies the size of the argument.
— A conversion specifiectharacter that specifies the type of conversion to be applied.

216) Note thab is taken as a flag, not as the beginning of a field width.

7.19.6 Library 7.19.6.1

7

260 Committee Draft — August 3, 1998 WG14/N843

As noted above, a field width, or precision, or both, may be indicated by an asterisk. In
this case, annt argument supplies the field width or precision. The arguments
specifying field width, or precision, or both, shall appear (in that order) before the
argument (if any) to be converted. A negative field width argument is taken #ag
followed by a positive field width. A negative precision argument is taken as if the
precision were omitted.

The flag characters and their meanings are:

- The result of the conversion is left-justified within the field. (It is right-justified if
this flag is not specified.)

+ The result of a signed conversion always begins with a plus or minus sign. (It
begins with a sign only when a negative value is converted if this flag is not
specified 317)

space If the first character of a signed conversion is not a sign, or if a signed conversion
results in no characters, a space is prefixed to the result. dptoeand+ flags
both appear, thepaceflag is ignored.

The result is converted to an “alternative form”. Kwmrconversion, it increases
the precision, if and only if necessary, to force the first digit of the result to be a
zero (if the value and precision are both 0, a single O is printed)x Kar X)
conversion, a nonzero result tas (or 0X) prefixed to it. Fom, A e, E, f,F, g,
andGconversions, the result always contains a decimal-point character, even if no
digits follow it. (Normally, a decimal-point character appears in the result of
these conversions only if a digit follows it.) Fgrand G conversions, trailing
zeros arenot removed from the result. For other conversions, the behavior is
undefined.

0 Ford, i, o0, u, X, X a, A e, E f,F, g, andG conversions, leading zeros
(following any indication of sign or base) are used to pad to the field width; no
space padding is performed. If tlleand - flags both appear, the flag is
ignored. Ford, i, 0, u, x, andX conversions, if a precision is specified, the
flag is ignored. For other conversions, the behavior is undefined.

The length modifiers and their meanings are:

hh Specifies that a followind, i , 0, u, X, or X conversion specifier applies to a
signed char or unsigned char argument (the argument will have
been promoted according to the integer promotions, but its value shall be
converted tesigned char ~ orunsigned char before printing); or that
a following n conversion specifier applies to a pointer tsigned char
argument.

217) The results of all floating conversions of a negative zero, and of negative values that round to zero,
include a minus sign.

7.19.6.1 Library 7.19.6.1

WG14/N843 Committee Draft — August 3, 1998 261

h Specifies that a followind, i , 0, u, X, or X conversion specifier applies to a
short int or unsigned short int argument (the argument will
have been promoted according to the integer promotions, but its value shall
be converted tshort int or unsigned short int before printing);
or that a followingn conversion specifier applies to a pointer tshart
int argument.

[(ell) Specifies that a followingd, i , 0, u, X, or X conversion specifier applies to a
long int or unsigned long int argument; that a following
conversion specifier applies to a pointer twrag int argument; that a
following ¢ conversion specifier applies tovant t argument; that a
following s conversion specifier applies to a pointer towahar t
argument; or has no effect on a followiagA, e, E, f , F, g, or Gconversion

specifier.

Il (ell-ell) Specifies that a followingd, i , 0, u, X, or X conversion specifier applies to a
long long int or unsigned long long int argument; or that a
following n conversion specifier applies to a pointer torag long int
argument.

j Specifies that a following, i , 0, u, X, or X conversion specifier applies to

anintmax_t oruintmax_t argument; or that a following conversion
specifier applies to a pointer to @mtmax_t argument.

z Specifies that a followind, i , 0, u, X, or X conversion specifier applies to a
size_t or the corresponding signed integer type argument; or that a
following n conversion specifier applies to a pointer to a signed integer type
corresponding tgize_t argument.

t Specifies that a followind, i , 0, u, X, or X conversion specifier applies to a
ptrdiff_t or the corresponding unsigned integer type argument; or that a
following n conversion specifier applies to a pointer tgtediff t
argument.

L Specifies that a following, A, e, E, f, F, g, or G conversion specifier

applies to dong double argument.

If a length modifier appears with any conversion specifier other than as specified above,
the behavior is undefined.

The conversion specifiers and their meanings are:

d,i Theint argument is converted to signed decimal in the $tyjeddd. The
precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it is expanded with
leading zeros. The default precision is 1. The result of converting a zero
value with a precision of zero is no characters.

o,u,x,X Theunsigned int argument is converted to unsigned octgl (nsigned
decimal (1), or unsigned hexadecimal notationdr X) in the styledddd; the
letters abcdef are used forx conversion and the lette®BCDEFfor X

7.19.6.1 Library 7.19.6.1

262

f,F

e,E

9,G

Committee Draft — August 3, 1998 WG14/N843

conversion. The precision specifies the minimum number of digits to appear;
if the value being converted can be represented in fewer digits, it is expanded
with leading zeros. The default precision is 1. The result of converting a
zero value with a precision of zero is no characters.

A double argument representing a (finite) floating-point number is
converted to decimal notation in the stjAgddd. ddd where the number of

digits after the decimal-point character is equal to the precision specification.
If the precision is missing, it is taken as 6; if the precision is zero and the
flag is not specified, no decimal-point character appears. If a decimal-point
character appears, at least one digit appears before it. The value is rounded to
the appropriate number of digits.

A double argument representing an infinity is converted in one of the styles
[-]inf or [-]infinity — which style is implementation-defined. A
double argument representing a NaN is converted in one of the styles
[- Jnan or [-]nan(n-char-sequende — which style, and the meaning of
any n-char-sequencgds implementation-defined. THe conversion specifier
producesINF, INFINITY , or NANinstead ofinf , infinity , Or nan,
respectively?1®)

A double argument representing a (finite) floating-point number is
converted in the styl¢-]d. ddde+dd, where there is one digit (which is
nonzero if the argument is nonzero) before the decimal-point character and
the number of digits after it is equal to the precision; if the precision is
missing, it is taken as 6; if the precision is zero andtfi@g is not specified,

no decimal-point character appears. The value is rounded to the appropriate
number of digits. TheE conversion specifier produces a number véth
instead ofe introducing the exponent. The exponent always contains at least
two digits, and only as many more digits as necessary to represent the
exponent. If the value is zero, the exponent is zero.

A double argument representing an infinity or NaN is converted in the style
of anf or F conversion specifier.

A double argument representing a (finite) floating-point number is
converted in styld or e (or in styleF or E in the case of & conversion
specifier), with the precision specifying the number of significant digits. If
the precision is zero, it is taken as 1. The style used depends on the value
converted; stylee (or E) is used only if the exponent resulting from such a
conversion is less than —4 or greater than or equal to the precision. Trailing
zeros are removed from the fractional portion of the result unlegsfthg is
specified; a decimal-point character appears only if it is followed by a digit.

A double argument representing an infinity or NaN is converted in the style

218) When applied to infinite and NaN values, the, andspaceflag characters have their usual meaning;

7.19.6.1

the# andO flag characters have no effect.

Library 7.19.6.1

WG14/N843 Committee Draft — August 3, 1998 263

a,A

of anf or F conversion specifier.

A double argument representing a (finite) floating-point number is
converted in the styl¢—]0Oxh. hhhhp+d, where there is one hexadecimal
digit (which is nonzero if the argument is a normalized floating-point number
and is otherwise unspecified) before the decimal-point chatattend the
number of hexadecimal digits after it is equal to the precision; if the precision
is missing and=LT_RADIX is a power of 2, then the precision is sufficient
for an exact representation of the value; if the precision is missing and
FLT_RADIX is not a power of 2, then the precision is sufficient to
distinguist#??) values of typedouble , except that trailing zeros may be
omitted; if the precision is zero and thdlag is not specified, no decimal-
point character appears. The lettakxdef are used fom conversion and

the lettersABCDEHor A conversion. Theé\ conversion specifier produces a
number withX and P instead ofx andp. The exponent always contains at
least one digit, and only as many more digits as necessary to represent the
decimal exponent of 2. If the value is zero, the exponent is zero.

A double argument representing an infinity or NaN is converted in the style
of anf or F conversion specifier.

If no | length modifier is present, thet argument is converted to an
unsigned char , and the resulting character is written.

If an| length modifier is present, th@nt_t argument is converted as if by
anls conversion specification with no precision and an argument that points
to the initial element of a two-element arrayvathar_t , the first element
containing thewint_t argument to théc conversion specification and the
second a null wide character.

If nol length modifier is present, the argument shall be a pointer to the initial
element of an array of character ty3®. Characters from the array are
written up to (but not including) the terminating null character. If the
precision is specified, no more than that many characters are written. If the
precision is not specified or is greater than the size of the array, the array shall
contain a null character.

If an| length modifier is present, the argument shall be a pointer to the initial
element of an array ofichar_t type. Wide characters from the array are
converted to multibyte characters (each as if by a call towitreomb

219) Binary implementations can choose the hexadecimal digit to the left of the decimal-point character so

that subsequent digits align to nibble (4-bit) boundaries.

220)The precisionp is sufficient to distinguish values of the source typé.@‘o_1 > b" whereb is

FLT_RADIX andn is the number of badedigits in the significand of the source type. A smafller
might suffice depending on the implementation’s scheme for determining the digit to the left of the
decimal-point character.

221) No special provisions are made for multibyte characters.

7.19.6.1

Library 7.19.6.1

10

11

12

13

264 Committee Draft — August 3, 1998 WG14/N843

function, with the conversion state described bynalostate t object
initialized to zero before the first wide character is converted) up to and
including a terminating null wide character. The resulting multibyte
characters are written up to (but not including) the terminating null character
(byte). If no precision is specified, the array shall contain a null wide
character. If a precision is specified, no more than that many characters
(bytes) are written (including shift sequences, if any), and the array shall
contain a null wide character if, to equal the multibyte character sequence
length given by the precision, the function would need to access a wide
character one past the end of the array. In no case is a partial multibyte
character writte??)

p The argument shall be a pointer void . The value of the pointer is
converted to a sequence of printable characters, in an implementation-defined
manner.

n The argument shall be a pointer to signed integer into whighiiten the

number of characters written to the output stream so far by this call to
fprintf . No argument is converted, but one is consumed. If the conversion
specification includes any flags, a field width, or a precision, the behavior is
undefined.

% A % character is written. No argument is converted. The complete
conversion specification shall B&%

If a conversion specification is invalid, the behavior is undefifBdf any argument is
not the correct type for the corresponding coversion specification, the behavior is
undefined.

In no case does a nonexistent or small field width cause truncation of a field; if the result
of a conversion is wider than the field width, the field is expanded to contain the
conversion result.

Fora andA conversions, iFLT_RADIX is a power of 2, the value is correctly rounded
to a hexadecimal floating number with the given precision.

Recommended practice

If FLT_RADIX is not a power of 2, the result should be one of the two adjacent numbers
in hexadecimal floating style with the given precision, with the extra stipulation that the
error should have a correct sign for the current rounding direction.

Fore, E, f, F, g, andGconversions, if the number of significant decimal digits is at most
DECIMAL_DIG then the result should be correctly round&d. If the number of
significant decimal digits is more th&ECIMAL_DIG but the source value is exactly
representable withDECIMAL_DIG digits, then the result should be an exact
representation with trailing zeros. Otherwise, the source value is bounded by two

222) Redundant shift sequences may result if multibyte characters have a state-dependent encoding.

223) See “future library directions” (7.26.9).

7.19.6.1 Library 7.19.6.1

14

15

16

17

18

WG14/N843 Committee Draft — August 3, 1998 265

adjacent decimal strinds< U, both havingDECIMAL_DIG significant digits; the value
of the resultant decimal stririgy should satisfyt < D < U, with the extra stipulation that
the error should have a correct sign for the current rounding direction.

Returns

Thefprintf function returns the number of characters transmitted, or a negative value
if an output or encoding error occurred.

Environmental limits

The number of characters that can be produced by any single conversion shall be at least
4095.

EXAMPLE 1 To print a date and time in the form “Sunday, July 3, 10:02" followedrhy five decimal
places:

#include <math.h>
#include <stdio.h>
L |
char *weekday, *month; 1 pointers to strings
int day, hour, min;
fprintf(stdout, "%s, %s %d, %.2d:%.2d\n",
weekday, month, day, hour, min);
fprintf(stdout, "pi = %.5\n", 4 * atan(1.0));

EXAMPLE 2 In this example, multibyte characters do not have a state-dependent encoding, and the
multibyte members of the extended character set each consist of two bytes, the first of which is denoted
here by a1 and the second by an uppercase letter.

Given the following wide string with length seven,
static wchar_t wstr[] = L" X Yabc Z W"p oo
the seven calls

fprintf(stdout, "|1234567890123|\n");
fprintf(stdout, "|%13Is|\n", wstr);
fprintf(stdout, "|%-13.9Is|\n", wstr);
fprintf(stdout, "|%13.10Is[\n", wstr);
fprintf(stdout, "|%13.11Is[\n", wstr);
fprintf(stdout, "|%13.15Is|\n", &wstr[2]);
fprintf(stdout, "|%13lc|\n", wstr[5]);

will print the following seven lines:

224) For binary-to-decimal conversion, the result format’s values are the numbers representable with the
given format specifier. The number of significant digits is determined by the format specifier, and in
the case of fixed-point conversion by the source value as well.

7.19.6.1 Library 7.19.6.1

266 Committee Draft — August 3, 1998 WG14/N843

|1234567890123|

| XoYabcZ W|
| X ¥ abcid |
| X oYabcZ|
| XoYabcZ W|
| a bcizZ W|
| Z|

Forward references: conversion state (7.24.6), tiwertomb function (7.24.6.3.3).
7.19.6.2 Thdscanf function
Synopsis

#include <stdio.h>
int fscanf(FILE * restrict stream,
const char * restrict format, ...);

Description

Thefscanf function reads input from the stream pointed testsgam , under control

of the string pointed to bfprmat that specifies the admissible input sequences and how
they are to be converted for assignment, using subsequent arguments as pointers to the
objects to receive the converted input. If there are insufficient arguments for the format,
the behavior is undefined. If the format is exhausted while arguments remain, the excess
arguments are evaluated (as always) but are otherwise ignored.

The format shall be a multibyte character sequence, beginning and ending in its initial
shift state. The format is composed of zero or more directives: one or more white-space
characters, an ordinary multibyte character (neithh@or a white-space character), or a
conversion specification. Each conversion specification is introduced by the ch#racter
After the% the following appear in sequence:

— An optional assignment-suppressing charatter

— An optional nonzero decimal integer that specifies the maximum field width (in
characters).

— An optionallength modifietthat specifies the size of the receiving object.
— A conversion specifiectharacter that specifies the type of conversion to be applied.

Thefscanf function executes each directive of the format in turn. If a directive fails, as
detailed below, the function returns. Failures are described as input failures (due to the
occurrence of an encoding error or the unavailability of input characters), or matching
failures (due to inappropriate input).

A directive composed of white-space character(s) is executed by reading input up to the
first non-white-space character (which remains unread), or until no more characters can
be read.

7.19.6.1 Library 7.19.6.2

10

11

WG14/N843 Committee Draft — August 3, 1998 267

A directive that is an ordinary multibyte character is executed by reading the next
characters of the stream. If any of those characters differ from the ones composing the
directive, the directive fails and the differing and subsequent characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each specifier. A conversion specification is executed in the
following steps:

Input white-space characters (as specified bysgmace function) are skipped, unless
the specification includes[a c, or n specifie??)

An input item is read from the stream, unless the specification includespaaifier. An

input item is defined as the longest sequence of input characters which does not exceed
any specified field width and which is, or is a prefix of, a matching input sequence. The
first character, if any, after the input item remains unread. If the length of the input item
is zero, the execution of the directive fails; this condition is a matching failure unless end-
of-file, an encoding error, or a read error prevented input from the stream, in which case it
is an input failure.

Except in the case of%specifier, the input item (or, in the case d¥adirective, the

count of input characters) is converted to a type appropriate to the conversion specifier. If
the input item is not a matching sequence, the execution of the directive fails: this
condition is a matching failure. Unless assignment suppression was indicatéd tne a

result of the conversion is placed in the object pointed to by the first argument following
the format argument that has not already received a conversion result. If this object
does not have an appropriate type, or if the result of the conversion cannot be represented
in the object, the behavior is undefined.

The length modifiers and their meanings are:

hh Specifies that a following, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointersm@ned char orunsigned char

h Specifies that a following, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointer short int or unsigned short
int .

[(ell) Specifies that a following, i , 0, u, X, X, or n conversion specifier applies

to an argument with type pointer tong int or unsigned long

int ; that a followinga, A, e, E, f, F, g, or Gconversion specifier applies to
an argument with type pointer tibuble ; or that a followingc, s, or [
conversion specifier applies to an argument with type pointechar_t .

Il (ell-ell) Specifies that a followind, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointer tong long int or unsigned
long long int

225) These white-space characters are not counted against a specified field width.

7.19.6.2 Library 7.19.6.2

12

268

Committee Draft — August 3, 1998 WG14/N843

Specifies that a following, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointerittmax_t or uintmax_t

Specifies that a followingd, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointer §ize t or the corresponding signed
integer type.

Specifies that a following, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointer fardiff t or the corresponding
unsigned integer type.

Specifies that a followin@g, A, e, E, f, F, g, or G conversion specifier
applies to an argument with type pointetdong double

If a length modifier appears with any conversion specifier other than as specified above,
the behavior is undefined.

The conversion specifiers and their meanings are:

d

a,ef,g

7.19.6.2

Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence ofdfiwl function with the value 10

for the base argument. The corresponding argument shall be a pointer to
signed integer.

Matches an optionally signed integer, whose format is the same as expected
for the subject sequence of thetol function with the value O for the
base argument. The corresponding argument shall be a pointer to signed
integer.

Matches an optionally signed octal integer, whose format is the same as
expected for the subject sequence ofdimoul function with the value 8

for the base argument. The corresponding argument shall be a pointer to
unsigned integer.

Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence ofdtinwul function with the value 10

for the base argument. The corresponding argument shall be a pointer to
unsigned integer.

Matches an optionally signed hexadecimal integer, whose format is the same
as expected for the subject sequence oftitteul function with the value

16 for thebase argument. The corresponding argument shall be a pointer to
unsigned integer.

Matches an optionally signed floating-point number, infinity, or NaN, whose
format is the same as expected for the subject sequence ofrtiba:
function. The corresponding argument shall be a pointer to floating.

Matches a sequence of characters of exactly the number specified by the field
width (1 if no field width is present in the directiv&$)

If no | length modifier is present, the corresponding argument shall be a

Library 7.19.6.2

WG14/N843 Committee Draft — August 3, 1998 269

pointer to the initial element of a character array large enough to accept the
sequence. No null character is added.

If an| length modifier is present, the input shall be a sequence of multibyte
characters that begins in the initial shift state. Each multibyte character in the
sequence is converted to a wide character as if by a call tmliltewc
function, with the conversion state described bynalostate t object
initialized to zero before the first multibyte character is converted. The
corresponding argument shall be a pointer to the initial element of an array of
wchar_t large enough to accept the resulting sequence of wide characters.
No null wide character is added.

S Matches a sequence of non-white-space chargédrs.

If no | length modifier is present, the corresponding argument shall be a
pointer to the initial element of a character array large enough to accept the
seguence and a terminating null character, which will be added automatically.

If an| length modifier is present, the input shall be a sequence of multibyte
characters that begins in the initial shift state. Each multibyte character is
converted to a wide character as if by a call tontiietowc function, with

the conversion state described byrabstate t object initialized to zero
before the first multibyte character is converted. The corresponding argument
shall be a pointer to the initial element of an arrawdfar_t large enough

to accept the sequence and the terminating null wide character, which will be
added automatically.

[Matches a nonempty sequence of characters from a set of expected characters
(thescanser?2%)

If no | length modifier is present, the corresponding argument shall be a
pointer to the initial element of a character array large enough to accept the
sequence and a terminating null character, which will be added automatically.

If an| length modifier is present, the input shall be a sequence of multibyte
characters that begins in the initial shift state. Each multibyte character is
converted to a wide character as if by a call tontetowc function, with

the conversion state described byrabstate t object initialized to zero
before the first multibyte character is converted. The corresponding argument
shall be a pointer to the initial element of an arrawaiiar _t large enough

to accept the sequence and the terminating null wide character, which will be
added automatically.

The conversion specifier includes all subsequent characters forthat
string, up to and including the matching right bracket The characters

226) No special provisions are made for multibyte characters in the matching rules used, sy trel[
conversion specifiers — the extent of the input field is still determined on a byte-by-byte basis. The
resulting field is nevertheless a sequence of multibyte characters that begins in the initial shift state.

7.19.6.2 Library 7.19.6.2

13
14

15

16

270 Committee Draft — August 3, 1998 WG14/N843

between the brackets (tBeanlis) compose the scanset, unless the character
after the left bracket is a circumfléx)(in which case the scanset contains all
characters that do not appear in the scanlist between the circumflex and the
right bracket. If the conversion specifier begins Wjthor [] , the right
bracket character is in the scanlist and the next following right bracket
character is the matching right bracket that ends the specification; otherwise
the first following right bracket character is the one that ends the
specification. If & character is in the scanlist and is not the first, nor the
second where the first character is,aor the last character, the behavior is
implementation-defined.

p Matches an implementation-defined set of sequences, which should be the
same as the set of sequences that may be produced ¥p tuaversion of
the fprintf function. The corresponding argument shall be a pointer to a
pointer tovoid . The interpretation of the input item is implementation-
defined. If the input item is a value converted earlier during the same
program execution, the pointer that results shall compare equal to that value;
otherwise the behavior of tiépconversion is undefined.

n No input is consumed. The corresponding argument shall be a pointer to
signed integer into which is to be written the number of characters read from
the input stream so far by this call to fiseanf function. Execution of a
%n directive does not increment the assignment count returned at the
completion of execution of thiscanf function. No argument is converted,
but one is consumed. If the conversion specification includes an assignment-
suppressing character or a field width, the behavior is undefined.

% Matches a singléb character; no conversion or assignment occurs. The
complete conversion specification shallbo

If a conversion specification is invalid, the behavior is undefifféd.

The conversion specifie’s, E, F, G and X are also valid and behave the same as,
respectivelya, e, f , g, andx.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any characters matching the current directive have been read (other than leading
white space, where permitted), execution of the current directive terminates with an input
failure; otherwise, unless execution of the current directive is terminated with a matching
failure, execution of the following directive (other thigm if any) is terminated with an

input failure.

Trailing white space (including new-line characters) is left unread unless matched by a
directive. The success of literal matches and suppressed assignments is not directly
determinable other than via thendirective.

227) See “future library directions” (7.26.9).

7.19.6.2 Library 7.19.6.2

17

18

19

20

21

22

WG14/N843 Committee Draft — August 3, 1998 271

If conversion terminates on a conflicting input character, the offending input character is
left unread in the input streafft)

Returns

Thefscanf function returns the value of the made®F if an input failure occurs
before any conversion. Otherwise, the function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early
matching failure.

EXAMPLE 1 The call:

#include <stdio.h>

%

int n, i; float x; char name[50];

n = fscanf(stdin, "%d%f%s", &i, &x, name);

with the input line:
25 54.32E-1 thompson

will assign ton the value 3, toi the value 25, tox the value 5.432, and tname the sequence
thompson\0

EXAMPLE 2 The call:

#include <stdio.h>

*

int i; float x; char name[50];

fscanf(stdin, "%2d%f%*d %[0123456789]", &i, &x, hame);

with input:
56789 0123 56a72

will assign toi the value 56 and ta the value 789.0, will ski®123, and will assign toname the
sequenc®6\0 . The next character read from the input stream wid.be

EXAMPLE 3 To accept repeatedly frostdin - a quantity, a unit of measure, and an item name:

#include <stdio.h>

L |
int count; float quant; char units[21], item[21];
do {

count = fscanf(stdin, "%f%20s of %20s", &quant, units, item);
fscanf(stdin,"%*["\n]");
} while (!feof(stdin) && !ferror(stdin));

If thestdin stream contains the following lines:

228)fscanf pushes back at most one input character onto the input stream. Therefore, some sequences
that are acceptable strtod , strtol , etc., are unacceptablefszanf

7.19.6.2 Library 7.19.6.2

23

24

25

26

272 Committee Draft — August 3, 1998 WG14/N843

2 quarts of oil
-12.8degrees Celsius
lots of luck

10.0LBS of

dirt

100ergs of energy

the execution of the alve example will be analogous to the following assignments:

guant = 2; strcpy(units, "quarts"); strcpy(item, "oil");

count = 3;

guant = -12.8; strcpy(units, "degrees");

count = 2; //"C" fails to match"o"
count=0;//"I" fails to match "%f"

guant = 10.0; strcpy(units, "LBS"); strcpy(item, "dirt");
count = 3;

count = 0; // "100e" fails to match "%f"

count = EOF;

EXAMPLE 4 In:

#include <stdio.h>

|

intdl, d2, n1, n2, i;

i = sscanf("123", "%d%n%n%d", &d1, &nl, &n2, &d2);

the value 123 is assignedda and the value 3 tol. Becausé&bncan never get an input failure the value
of 3 is also assigned t2. The value ofi2 is not affected. The value 1 is assigned to

EXAMPLE 5 In these examples, multibyte characters do have a state-dependent encoding, and multibyte
members of the extended character set consist ofytes fthe first of which is denoted here hy a and the
second by an uppercase letter, but are only recognized as such when in the alternate shift state. The shift
sequences are denotedbgnd !, in which the first causes entry into the alternate shift state.

After the call:

#include <stdio.h>

*

char str[50];

fscanf(stdin, "a%s", str);
with the input line:

aroXaYl bc

str will contain 10XoYL\0 assuming that none of the bytes of the shift sequences (or of the multibyte
characters, in the more general case) appears to be a single-byte white-space character.

In contrast, after the call:

#include <stdio.h>
#include <stddef.h>

*

wchar_t wstr[50];
fscanf(stdin, "a%ls", wstr);

with the same input lineystr will contain the two vide characters that correspond®¥ andoY and a

7.19.6.2 Library 7.19.6.2

27

28

WG14/N843 Committee Draft — August 3, 1998 273

terminating null wide character.
However, the call:

#include <stdio.h>

#include <stddef.h>

roo

wchar_t wstr[50];

fscanf(stdin, "a 10X %Is", wstr);

with the same input line will return zero due to a matching failure against geguence in the format
string.

Assuming that the first byte of the multibyte charact¥ris the same as the first byte of the multibyte
characten, after the call:

#include <stdio.h>

#include <stddef.h>

roo

wchar_t wstr[50];

fscanf(stdin, "a 1aY1 %lIs", wstr);

with the same input line, zero will again be returned,dbdin will be left with a partially consumed
multibyte character.

Forward references: the strtod , strtof , andstrtold functions (7.20.1.3), the
strtol , strtoll , strtoul , andstrtoull functions (7.20.1.4), conversion state
(7.24.6), thavcrtomb function (7.24.6.3.3).

7.19.6.3 Theprintf function
Synopsis

#include <stdio.h>
int printf(const char * restrict format, ...);

Description

Theprintf function is equivalent téprintf with the argumenstdout interposed
before the arguments pointf

Returns

Theprintf function returns the number of characters transmitted, or a negative value if

an output or encoding error occurred.

7.19.6.2 Library 7.19.6.3

274 Committee Draft — August 3, 1998 WG14/N843

7.19.6.4 Thescanf function
Synopsis

#include <stdio.h>

int scanf(const char * restrict format, ...);
Description

The scanf function is equivalent tdscanf with the argumenstdin interposed
before the arguments scanf .

Returns

Thescanf function returns the value of the ma&O@Fif an input failure occurs before

any conversion. Otherwise, thecanf function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early
matching failure.

7.19.6.5 Thesnprintf function
Synopsis

#include <stdio.h>
int snprintf(char * restrict s, size_t n,
const char * restrict format, ...);

Description

Thesnprintf function is equivalent téprintf , except that the output is written into

an array (specified by argumesjtrather than to a stream. rifis zero, nothing is written,

and s may be a null pointer. Otherwise, output characters beyondnthest are
discarded rather than being written to the array, and a null character is written at the end
of the characters actually written into the array. If copying takes place between objects
that overlap, the behavior is undefined.

Returns

Thesnprintf function returns the number of characters that would have been written
hadn been sufficiently large, not counting the terminating null character, or a negative
value if an encoding error occurred. Thus, the null-terminated output has been
completely written if and only if the returned value is nonnegative and less.than

7.19.6.3 Library 7.19.6.5

WG14/N843 Committee Draft — August 3, 1998 275

7.19.6.6 Thesprintf function
Synopsis

#include <stdio.h>
int sprintf(char * restrict s,
const char * restrict format, ...);

Description

Thesprintf function is equivalent téprintf , except that the output is written into

an array (specified by the argumeptrather than to a stream. A null character is written

at the end of the characters written; it is not counted as part of the returned value. If
copying takes place between objects that overlap, the behavior is undefined.

Returns

The sprintf function returns the number of characters written in the array, not
counting the terminating null character, or a negative value if an encoding error occurred.

7.19.6.7 Thesscanf function
Synopsis

#include <stdio.h>
int sscanf(const char * restrict s,
const char * restrict format, ...);

Description

The sscanf function is equivalent tdscanf , except that input is obtained from a
string (specified by the argumes} rather than from a stream. Reaching the end of the
string is equivalent to encountering end-of-file for tkeanf function. If copying
takes place between objects that overlap, the behavior is undefined.

Returns

The sscanf function returns the value of the made®F if an input failure occurs
before any conversion. Otherwise, tegcanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.19.6.5 Library 7.19.6.7

276 Committee Draft — August 3, 1998 WG14/N843

7.19.6.8 Thevfprintf function
Synopsis

#include <stdarg.h>

#include <stdio.h>

int vfprintf(FILE * restrict stream,
const char * restrict format,

va_list arg);
Description
The vfprintf function is equivalent tdprintf , with the variable argument list
replaced byarg , which shall have been initialized by tha_start macro (and
possibly subsequenta_arg calls). The vfprintf function does not invoke the

va_end macro??®
Returns

The viprintf function returns the number of characters transmitted, or a negative
value if an output or encoding error occurred.

EXAMPLE The following shows the use of théprintf function in a general error-reporting routine.

#include <stdarg.h>
#include <stdio.h>

void error(char *function_name, char *format, ...)

{
va_list args;
va_start(args, format);
/I print out name of function causing error
fprintf(stderr, "ERROR in %s: ", function_name);
/I print out remainder of message
vfprintf(stderr, format, args);
va_end(args);

}

229) As the functionsvfprintf , viscanf |, vprintf |, vscanf , vsnprintf , vsprintf , and

vsscanf invoke theva_arg macro, the value airg after the return is indeterminate.

7.19.6.7 Library 7.19.6.8

WG14/N843 Committee Draft — August 3, 1998 277

7.19.6.9 Thevfscanf function
Synopsis

#include <stdarg.h>

#include <stdio.h>

int vfscanf(FILE * restrict stream,
const char * restrict format,
va_list arg);

Description

The vfscanf function is equivalent tdscanf , with the variable argument list
replaced byarg , which shall have been initialized by tha_start macro (and
possibly subsequenta_arg calls). Thevfscanf function does not invoke the
va_end macro??®

Returns

The vfscanf function returns the value of the made®F if an input failure occurs
before any conversion. Otherwise, tiiscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.19.6.10 Thevprintf function
Synopsis

#include <stdarg.h>

#include <stdio.h>

int vprintf(const char * restrict format,
va_list arg);

Description

The vprintf function is equivalent tgorintf , with the variable argument list
replaced byarg , which shall have been initialized by tha start macro (and
possibly subsequenta_arg calls). The vprintf function does not invoke the

va_end macro?®

Returns

Thevprintf function returns the number of characters transmitted, or a negative value
if an output or encoding error occurred.

7.19.6.8 Library 7.19.6.10

278 Committee Draft — August 3, 1998 WG14/N843

7.19.6.11 Thesscanf function
Synopsis

#include <stdarg.h>

#include <stdio.h>

int vscanf(const char * restrict format,
va_list arg);

Description

Thevscanf function is equivalent tecanf , with the variable argument list replaced
by arg , which shall have been initialized by tlva_start macro (and possibly
subsequentva_arg calls). Thevscanf function does not invoke thea end

macro?29)

Returns

The vscanf function returns the value of the made®F if an input failure occurs
before any conversion. Otherwise, thgcanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.19.6.12 Theysnprintf function
Synopsis

#include <stdarg.h>

#include <stdio.h>

int vsprintf(char * restrict s, size_tn,
const char * restrict format,
va_list arg);

Description

The vsnprintf function is equivalent tenprintf , with the variable argument list
replaced byarg , which shall have been initialized by tha start macro (and
possibly subsequenta_arg calls). Thevsnprintf function does not invoke the
va_end macro??® If copying takes place between objects that overlap, the behavior is
undefined.

Returns

Thevsnprintf function returns the number of characters that would have been written
hadn been sufficiently large, not counting the terminating null character, or a negative
value if an encoding error occurred. Thus, the null-terminated output has been
completely written if and only if the returned value is nonnegative and lesa.than

7.19.6.10 Library 7.19.6.12

WG14/N843 Committee Draft — August 3, 1998 279

7.19.6.13 Thessprintf function
Synopsis

#include <stdarg.h>

#include <stdio.h>

int vsprintf(char * restrict s,
const char * restrict format,
va_list arg);

Description

The vsprintf function is equivalent tesprintf , with the variable argument list
replaced byarg , which shall have been initialized by tha_start macro (and
possibly subsequenta_arg calls). Thevsprintf function does not invoke the
va_end macro®?® If copying takes place between objects that overlap, the behavior is
undefined.

Returns

The vsprintf function returns the number of characters written in the array, not
counting the terminating null character, or a negative value if an encoding error occurred.

7.19.6.14 Thevsscanf function
Synopsis

#include <stdarg.h>

#include <stdio.h>

int vsscanf(const char * restrict s,
const char * restrict format,
va_list arg);

Description

The vsscanf function is equivalent tosscanf , with the variable argument list
replaced byarg , which shall have been initialized by tha start macro (and
possibly subsequenta_arg calls). Thevsscanf function does not invoke the

va_end macro?%®

Returns

Thevsscanf function returns the value of the made®F if an input failure occurs
before any conversion. Otherwise, thgcanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.19.6.12 Library 7.19.6.14

280 Committee Draft — August 3, 1998 WG14/N843

7.19.7 Character input/output functions
7.19.7.1 Thdgetc function
Synopsis

#include <stdio.h>
int fgetc(FILE *stream);

Description

If a next character is present from the input stream pointed strégm , the fgetc
function obtains that character as ansigned char converted to annt and
advances the associated file position indicator for the stream (if defined).

Returns

The fgetc function returns the next character from the input stream pointed to by
stream . If the stream is at end-of-file, the end-of-file indicator for the stream is set and
fgetc returnsEOF If a read error occurs, the error indicator for the stream is set and
fgetc returnsEOF230)

7.19.7.2 Thdgets function
Synopsis

#include <stdio.h>
char *fgets(char * restrict s, int n,
FILE * restrict stream);

Description

Thefgets function reads at most one less than the number of characters specified by
from the stream pointed to kstream into the array pointed to by. No additional
characters are read after a new-line character (which is retained) or after end-of-file. A
null character is written immediately after the last character read into the array.

Returns

The fgets function returnss if successful. If end-of-file is encountered and no
characters have been read into the array, the contents of the array remain unchanged and a
null pointer is returned. If a read error occurs during the operation, the array contents are
indeterminate and a null pointer is returned.

230) An end-of-file and a read error can be distinguished by use fefotheandferror ~ functions.

7.19.7 Library 7.19.7.2

WG14/N843 Committee Draft — August 3, 1998 281

7.19.7.3 Thdputc function
Synopsis

#include <stdio.h>
int fputc(int ¢, FILE *stream);

Description

The fputc function writes the character specified ©yconverted to amunsigned

char) to the output stream pointed to lsfream , at the position indicated by the
associated file position indicator for the stream (if defined), and advances the indicator
appropriately. If the file cannot support positioning requests, or if the stream was opened
with append mode, the character is appended to the output stream.

Returns

The fputc function returns the character written. If a write error occurs, the error
indicator for the stream is set afpaitc returnsEOF.

7.19.7.4 Thdputs function
Synopsis

#include <stdio.h>
int fputs(const char * restrict s,
FILE * restrict stream);

Description

The fputs function writes the string pointed to lg/ to the stream pointed to by
stream . The terminating null character is not written.

Returns

The fputs function returnsEOF if a write error occurs; otherwise it returns a
nonnegative value.

7.19.7.2 Library 7.19.7.4

282 Committee Draft — August 3, 1998 WG14/N843

7.19.7.5 Theyetc function
Synopsis

#include <stdio.h>
int getc(FILE *stream);

Description

Thegetc function is equivalent tégetc , except that if it is implemented as a macro, it
may evaluatestream more than once, so the argument should never be an expression
with side effects.

Returns

The getc function returns the next character from the input stream pointed to by
stream . If the stream is at end-of-file, the end-of-file indicator for the stream is set and
getc returnseOF If a read error occurs, the error indicator for the stream is set and
getc returnsEOF

7.19.7.6 Thegetchar function
Synopsis

#include <stdio.h>
int getchar(void);

Description
Thegetchar function is equivalent tgetc with the argumenstdin
Returns

Thegetchar function returns the next character from the input stream pointed to by
stdin . If the stream is at end-of-file, the end-of-file indicator for the stream is set and
getchar returnseOF If a read error occurs, the error indicator for the stream is set and
getchar returnsEOF

7.19.7.4 Library 7.19.7.6

WG14/N843 Committee Draft — August 3, 1998 283

7.19.7.7 Thegets function
Synopsis

#include <stdio.h>
char *gets(char *s);

Description

Thegets function reads characters from the input stream pointed sbdoy , into the

array pointed to by, until end-of-file is encountered or a new-line character is read.
Any new-line character is discarded, and a null character is written immediately after the
last character read into the array.

Returns

The gets function returnss if successful. If end-of-file is encountered and no
characters have been read into the array, the contents of the array remain unchanged and a
null pointer is returned. If a read error occurs during the operation, the array contents are
indeterminate and a null pointer is returned.

7.19.7.8 Theputc function
Synopsis

#include <stdio.h>
int putc(int ¢, FILE *stream);

Description

Theputc function is equivalent tfputc , except that if it is implemented as a macro, it
may evaluatestream more than once, so that argument should never be an expression
with side effects.

Returns

The putc function returns the character written. If a write error occurs, the error
indicator for the stream is set apdic returnsEOF

7.19.7.6 Library 7.19.7.8

284 Committee Draft — August 3, 1998 WG14/N843

7.19.7.9 Theoutchar function
Synopsis

#include <stdio.h>
int putchar(int c);

Description
Theputchar function is equivalent tputc with the second argumesidout
Returns

The putchar function returns the character written. If a write error occurs, the error
indicator for the stream is set apdtchar returnsEOF

7.19.7.10 Theputs function
Synopsis

#include <stdio.h>

int puts(const char *s);
Description

Theputs function writes the string pointed to Byto the stream pointed to lsydout ,
and appends a new-line character to the output. The terminating null character is not
written.

Returns

Theputs function return€EOFif a write error occurs; otherwise it returns a nonnegative
value.

7.19.7.11 Theaungetc function
Synopsis

#include <stdio.h>

int ungetc(int ¢, FILE *stream));
Description

Theungetc function pushes the character specifiedchigonverted to amnsigned

char) back onto the input stream pointed todbseam . Pushed-back characters will be
returned by subsequent reads on that stream in the reverse order of their pushing. A
successful intervening call (with the stream pointed tetbgam) to a file positioning
function fseek , fsetpos , or rewind) discards any pushed-back characters for the
stream. The external storage corresponding to the stream is unchanged.

One character of pushback is guaranteed. Ifutigeetc function is called too many
times on the same stream without an intervening read or file positioning operation on that
stream, the operation may fail.

7.19.7.8 Library 7.19.7.11

WG14/N843 Committee Draft — August 3, 1998 285

If the value ofc equals that of the macEOF, the operation fails and the input stream is
unchanged.

A successful call to thengetc function clears the end-of-file indicator for the stream.

The value of the file position indicator for the stream after reading or discarding all
pushed-back characters shall be the same as it was before the characters were pushed
back. For a text stream, the value of its file position indicator after a successful call to the
ungetc function is unspecified until all pushed-back characters are read or discarded.
For a binary stream, its file position indicator is decremented by each successful call to
the lzjgl etc function; if its value was zero before a call, it is indeterminate after the
call.

Returns

Theungetc function returns the character pushed back after conversi&@QBif the
operation fails.

Forward references: file positioning functions (7.19.9).
7.19.8 Direct input/output functions

7.19.8.1 Thdread function

Synopsis

#include <stdio.h>

size_t fread(void * restrict ptr,
size_t size, size_t nmemb,
FILE * restrict stream);

Description

Thefread function reads, into the array pointed to fiily , up to nmembelements
whose size is specified ksize , from the stream pointed to lstream . The file
position indicator for the stream (if defined) is advanced by the number of characters
successfully read. If an error occurs, the resulting value of the file position indicator for
the stream is indeterminate. If a partial element is read, its value is indeterminate.

Returns

Thefread function returns the number of elements successfully read, which may be
less thammembif a read error or end-of-file is encounteredsife or nmembis zero,

fread returns zero and the contents of the array and the state of the stream remain
unchanged.

231) See “future library directions” (7.26.9).

7.19.7.11 Library 7.19.8.1

286 Committee Draft — August 3, 1998 WG14/N843

7.19.8.2 Thdwrite function
Synopsis

#include <stdio.h>

size_t fwrite(const void * restrict ptr,
size_t size, size_t nmemb,
FILE * restrict stream);

Description

Thefwrite function writes, from the array pointed to pir , up tonmembelements
whose size is specified 3yze , to the stream pointed to ksgream . The file position
indicator for the stream (if defined) is advanced by the number of characters successfully
written. If an error occurs, the resulting value of the file position indicator for the stream
is indeterminate.

Returns

Thefwrite function returns the number of elements successfully written, which will be
less thammembonly if a write error is encountered.

7.19.9 File positioning functions
7.19.9.1 Thdgetpos function
Synopsis

#include <stdio.h>
int fgetpos(FILE * restrict stream,
fpos_t * restrict pos);

Description

The fgetpos function stores the current values of the parse state (if any) and file
position indicator for the stream pointed todigeam in the object pointed to byos .

The values stored contain unspecified information usable bfsetygos function for
repositioning the stream to its position at the time of the call tiggtpos function.

Returns

If successful, thégetpos function returns zero; on failure, tHgetpos function
returns nonzero and stores an implementation-defined positive varaan .

Forward references: thefsetpos function (7.19.9.3).

7.19.8.1 Library 7.19.9.1

WG14/N843 Committee Draft — August 3, 1998 287

7.19.9.2 Thdseek function
Synopsis

#include <stdio.h>
int fseek(FILE *stream, long int offset, int whence);

Description

Thefseek function sets the file position indicator for the stream pointed &irbgm .
If a read or write error occurs, the error indicator for the stream is s&emid fails.

For a binary stream, the new position, measured in characters from the beginning of the
file, is obtained by addingffset to the position specified byhence. The specified
position is the beginning of the filewihence is SEEK_SET the current value of the file
position indicator ifSEEK_CURor end-of-file f SEEK_ENDA binary stream need not
meaningfully supportseek calls with awhence value ofSEEK_END

For a text stream, eitheffset shall be zero, ooffset shall be a value returned by
an earlier successful call to tfiell function on a stream associated with the same file
andwhence shall beSEEK_SET

After determining the new position, a successful call tofgtkek function undoes any
effects of theungetc function on the stream, clears the end-of-file indicator for the
stream, and then establishes the new position. After a succéssfll call, the next
operation on an update stream may be either input or output.

Returns

Thefseek function returns nonzero only for a request that cannot be satisfied.
Forward references: theftell function (7.19.9.4).

7.19.9.3 Thdsetpos function

Synopsis

#include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos);

Description

Thefsetpos function sets thenbstate t object (if any) and file position indicator

for the stream pointed to kstream according to the value of the object pointed to by
pos, which shall be a value obtained from an earlier successful call tiyet@os

function on a stream associated with the same file. If a read or write error occurs, the
error indicator for the stream is set dadtpos fails.

A successful call to thisetpos function undoes any effects of thi@getc function

on the stream, clears the end-of-file indicator for the stream, and then establishes the new
parse state and position. After a succestdatpos call, the next operation on an
update stream may be either input or output.

7.19.9.1 Library 7.19.9.3

288 Committee Draft — August 3, 1998 WG14/N843

Returns

If successful, thdsetpos function returns zero; on failure, tsetpos function
returns nonzero and stores an implementation-defined positive vauaan .

7.19.9.4 Thdtell function
Synopsis

#include <stdio.h>
long int ftell(FILE *stream);

Description

Theftell function obtains the current value of the file position indicator for the stream
pointed to bystream . For a binary stream, the value is the number of characters from
the beginning of the file. For a text stream, its file position indicator contains unspecified
information, usable by thiseek function for returning the file position indicator for the
stream to its position at the time of tftell call; the difference between two such
return values is not necessarily a meaningful measure of the number of characters written
or read.

Returns

If successful, thétell ~ function returns the current value of the file position indicator
for the stream. On failure, thdtell function returns -1L and stores an
implementation-defined positive valuearrno .

7.19.9.5 Theewind function
Synopsis

#include <stdio.h>
void rewind(FILE *stream);

Description

The rewind function sets the file position indicator for the stream pointed to by
stream to the beginning of the file. It is equivalent to

(void)fseek(stream, OL, SEEK_SET)
except that the error indicator for the stream is also cleared.
Returns
Therewind function returns no value.

7.19.9.3 Library 7.19.9.5

WG14/N843 Committee Draft — August 3, 1998 289

7.19.10 Error-handling functions
7.19.10.1 Thelearerr function
Synopsis

#include <stdio.h>
void clearerr(FILE *stream);

Description

Theclearerr function clears the end-of-file and error indicators for the stream pointed
to bystream .

Returns

Theclearerr function returns no value.
7.19.10.2 Thdeof function
Synopsis

#include <stdio.h>
int feof(FILE *stream);

Description
Thefeof function tests the end-of-file indicator for the stream pointed &irepm .
Returns

The feof function returns nonzero if and only if the end-of-file indicator is set for
stream .

7.19.10.3 Thderror function
Synopsis

#include <stdio.h>
int ferror(FILE *stream);

Description
Theferror function tests the error indicator for the stream pointed t&tigyam .
Returns

The ferror function returns nonzero if and only if the error indicator is set for
stream .

7.19.10 Library 7.19.10.3

290 Committee Draft — August 3, 1998 WG14/N843

7.19.10.4 Theperror function
Synopsis

#include <stdio.h>
void perror(const char *s);

Description

The perror function maps the error number in the integer expressiom to an

error message. It writes a sequence of characters to the standard error stream thus: first
(if s is not a null pointer and the character pointed t® lxy not the null character), the

string pointed to bys followed by a colon:() and a space; then an appropriate error
message string followed by a new-line character. The contents of the error message
strings are the same as those returned bgtteeror ~ function with argumengrrmo .

Returns
Theperror function returns no value.
Forward references: thestrerror function (7.21.6.2).

7.19.10.3 Library 7.19.10.4

WG14/N843 Committee Draft — August 3, 1998 291

7.20 General utilities<stdlib.h>

The headexstdlib.h> declares five types and several functions of general utility, and
defines several macré®

The types declared aseze t andwchar_t (both described in 7.17),
div_t
which is a structure type that is the type of the value returned lopthé&unction,
Idiv_t
which is a structure type that is the type of the value returned ligithe function, and
lIdiv_t
which is a structure type that is the type of the value returned liigithe function.
The macros defined akJLL (described in 7.17);
EXIT_FAILURE
and
EXIT_SUCCESS

which expand to integer expressions that may be used as the argumentexat the
function to return unsuccessful or successful termination status, respectively, to the host
environment;

RAND_MAX

which expands to an integer constant expression, the value of which is the maximum
value returned by theand function; and

MB_CUR_MAX

which expands to a positive integer expression whose value is the maximum number of
bytes in a multibyte character for the extended character set specified by the current
locale (category.C_CTYPBH, and whose value is never greater tNd LEN_MAX

7.20.1 String conversion functions

The functionsatof , atoi , atol , andatoll need not affect the value of the integer
expressionerrno on an error. If the value of the result cannot be represented, the
behavior is undefined.

232) See “future library directions” (7.26.10).

7.20 Library 7.20.1

292 Committee Draft — August 3, 1998 WG14/N843

7.20.1.1 Theatof function
Synopsis

#include <stdlib.h>
double atof(const char *nptr);

Description

The atof function converts the initial portion of the string pointed torptr to
double representation. Except for the behavior on error, it is equivalent to

strtod(nptr, (char *)NULL)
Returns
Theatof function returns the converted value.
Forward references: thestrtod , strtof , andstrtold functions (7.20.1.3).
7.20.1.2 Theatoi ,atol ,andatoll functions
Synopsis

#include <stdlib.h>

int atoi(const char *nptr);

long int atol(const char *nptr);

long long int atoll(const char *nptr);

Description

Theatoi , atol , andatoll functions convert the initial portion of the string pointed
to by nptr toint ,long int , andlong long int representation, respectively.
Except for the behavior on error, they are equivalent to

atoi: (int)strtol(nptr, (char *)NULL, 10)
atol: strtol(nptr, (char *)NULL, 10)
atoll: strtoll(nptr, (char *)NULL, 10)

Returns

Theatoi , atol , andatoll functions return the converted value.

Forward references: the strtol , strtoll , strtoul , and strtoull functions
(7.20.1.4).

7.20.1.3 Thestrtod , strtof , and strtold functions

Synopsis

7.20.1 Library 7.20.1.3

WG14/N843 Committee Draft — August 3, 1998 293

#include <stdlib.h>

double strtod(const char * restrict nptr,
char ** restrict endptr);

float strtof(const char * restrict nptr,
char ** restrict endptr);

long double strtold(const char * restrict nptr,
char ** restrict endptr);

Description

Thestrtod , strtof , andstrtold functions convert the initial portion of the string
pointed to bynptr to double , float , and long double representation,
respectively. First, they decompose the input string into three parts: an initial, possibly
empty, sequence of white-space characters (as specified lgspaee function), a
subject sequence resembling a floating-point constant or representing an infinity or NaN;
and a final string of one or more unrecognized characters, including the terminating null
character of the input string. Then, they attempt to convert the subject sequence to a
floating-point number, and return the result.

The expected form of the subject sequence is an optional plus or minus sign, then one of
the following:

— a nonempty sequence of decimal digits optionally containing a decimal-point
character, then an optional exponent part as defined in 6.4.4.2;

— a0x or 0X, then a nonempty sequence of hexadecimal digits optionally containing a
decimal-point character, then an optional binary-exponent part as defined in 6.4.4.2,
where either the decimal-point character or the binary-exponent part is present;

— one ofINF or INFINITY , ignoring case
— one ofNANor NAN(n-char-sequen%%t) , ignoring case in thBlANpart, where:

n-char-sequence:
digit
nondigit
n-char-sequence digit
n-char-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input string,
starting with the first non-white-space character, that is of the expected form. The subject
sequence contains no characters if the input string is not of the expected form.

If the subject sequence has the expected form for a floating-point number, the sequence of
characters starting with the first digit or the decimal-point character (whichever occurs
first) is interpreted as a floating constant according to the rules of 6.4.4.2, except that the
decimal-point character is used in place of a period, and that if neither an exponent part, a
binary-exponent part, nor a decimal-point character appears, a decimal point is assumed
to follow the last digit in the string. A character sequefd& or INFINITY is
interpreted as an infinity, if representable in the return type, else like a floating constant
that is too large for the range of the return type. A character sequéAbeor

7.20.1.3 Library 7.20.1.3

10

294 Committee Draft — August 3, 1998 WG14/N843

NAN(n-char-sequen% t) , is interpreted as a quiet NaN, if supported in the return type,
else like a subject sequence part that does not have the expected form; the meaning of the
n-char sequences is implementation-deffi8d.If the subject sequence begins with a
minus sign, the value resulting from the conversion is negated pointer to the final

string is stored in the object pointed todrydptr , provided thaendptr is not a null

pointer.

If the subject sequence has the hexadecimal fornFeMdRADIX is a power of 2, then
the value resulting from the conversion is correctly rounded.

In other than théC" locale, additional locale-specific subject sequence forms may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value aiptr is stored in the object pointed to byndptr , provided
thatendptr is not a null pointer.

Recommended practice

If the subject sequence has the hexadecimal fornFaMdRADIX is not a power of 2,

then the result should be one of the two numbers in the appropriate internal format that
are adjacent to the hexadecimal floating source value, with the extra stipulation that the
error should have a correct sign for the current rounding direction.

If the subject sequence has the decimal form and at DE6StMAL_DIG (defined in
<float.n>) significant digits, then the value resulting from the conversion should be
correctly rounded. If the subject sequerigehas the decimal form and more than
DECIMAL_DIG significant digits, consider the two bounding, adjacent decimal sttings
andU, both havingDECIMAL_DIGsignificant digits, such that the valuedoD, andU
satisfyL < D < U. The result of conversion should be one of the (equal or adjacent)
values that would be obtained by correctly roundingnd U according to the current
rounding direction, with the extra stipulation that the error with respd2tstoould have

a correct sign for the current rounding directfdn.

Returns

The functions return the converted value, if any. If no conversion could be performed,
zero is returned. If the correct value is outside the range of representable values, plus or
minus HUGE_VALHUGE_VALFor HUGE_VALLIs returned (according to the return

type and sign of the value), and the value of the mB&ANGEs stored inerrno . If

the result underflows (7.12.1), the functions return a value whose magnitude is no greater
than the smallest normalized positive number in the return type; wkegther acquires

the valueERANGHs implementation-defined.

233) An implementation may use thechar-sequencto determine extra information to be represented in
the NaN's significand.

234) The functions honor the sign of zero if floating-point arithmetic supports signed zeros.

235)DECIMAL_DIG, defined in<float.h> , should be sufficiently large thatandU will usually round
to the same internal floating value, but if not will round to adjacent values.

7.20.1.3 Library 7.20.1.3

WG14/N843 Committee Draft — August 3, 1998 295

7.20.1.4 Thestrtol , strtoll , Strtoul , and strtoull functions
Synopsis

#include <stdlib.h>

long int strtol(
const char * restrict nptr,
char ** restrict endptr,
int base);

long long int strtoll(
const char * restrict nptr,
char ** restrict endptr,
int base);

unsigned long int strtoul(
const char * restrict nptr,
char ** restrict endptr,
int base);

unsigned long long int strtoull(
const char * restrict nptr,
char ** restrict endptr,

int base);
Description
The strtol , strtoll , Strtoul , and strtoull functions convert the initial
portion of the string pointed to mptr tolong int , long long int , unsigned
long int , andunsigned long long int representation, respectively. First,

they decompose the input string into three parts: an initial, possibly empty, sequence of
white-space characters (as specified by iflspace function), a subject sequence
resembling an integer represented in some radix determined by the vhhseogfand a

final string of one or more unrecognized characters, including the terminating null
character of the input string. Then, they attempt to convert the subject sequence to an
integer, and return the result.

If the value ofbase is zero, the expected form of the subject sequence is that of an
integer constant as described in 6.4.4.1, optionally preceded by a plus or minus sign, but
not including an integer suffix. If the value lodise is between 2 and 36 (inclusive), the
expected form of the subject sequence is a sequence of letters and digits representing an
integer with the radix specified tase , optionally preceded by a plus or minus sign,

but not including an integer suffix. The letters fran(or A) throughz (or Z) are
ascribed the values 10 through 35; only letters and digits whose ascribed values are less
than that obase are permitted. If the value biase is 16, the charactefx or 0X may
optionally precede the sequence of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input string,
starting with the first non-white-space character, that is of the expected form. The subject
seguence contains no characters if the input string is empty or consists entirely of white
space, or if the first non-white-space character is other than a sign or a permissible letter

7.20.1.3 Library 7.20.1.4

296 Committee Draft — August 3, 1998 WG14/N843

or digit.

If the subject sequence has the expected form and the vddaseois zero, the sequence

of characters starting with the first digit is interpreted as an integer constant according to
the rules of 6.4.4.1. If the subject sequence has the expected form and the bakes of

is between 2 and 36, it is used as the base for conversion, ascribing to each letter its value
as given above. If the subject sequence begins with a minus sign, the value resulting from
the conversion is negated (in the return type). A pointer to the final string is stored in the
object pointed to bendptr , provided thaendptr is not a null pointer.

In other than théC" locale, additional locale-specific subject sequence forms may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value aiptr is stored in the object pointed to byndptr , provided
thatendptr is not a null pointer.

Returns

The strtol , strtoll , strtoul , and strtoull functions return the converted
value, if any. If no conversion could be performed, zero is returned. If the correct value
is outside the range of representable vall€3NG MIN LONG_MAXLLONG_MIN
LLONG_MAXULONG_MAXor ULLONG_MAJXs returned (according to the return type
and sign of the value, if any), and the value of the mBEBXANGEHEs stored irerrno .

7.20.2 Pseudo-random sequence generation functions
7.20.2.1 Theand function
Synopsis

#include <stdlib.h>
int rand(void);

Description

Therand function computes a sequence of pseudo-random integers in the range 0 to
RAND_MAX

The implementation shall behave as if no library function callsahe function.
Returns

Therand function returns a pseudo-random integer.

Environmental limits

The value of th®@AND_MAXhacro shall be at least 32767.

7.20.1.4 Library 7.20.2.1

WG14/N843 Committee Draft — August 3, 1998 297

7.20.2.2 Thesrand function
Synopsis

#include <stdlib.h>
void srand(unsigned int seed);

Description

Thesrand function uses the argument as a seed for a new sequence of pseudo-random
numbers to be returned by subsequent calland . If srand is then called with the

same seed value, the sequence of pseudo-random numbers shall be repeatdd.islf

called before any calls &rand have been made, the same sequence shall be generated
as whersrand is first called with a seed value of 1.

The implementation shall behave as if no library function callsriéwed function.
Returns
Thesrand function returns no value.

EXAMPLE The following functions define a portable implementatioreofi andsrand .

static unsigned long int next = 1;

int rand(void) // RAND_MAX assumed to be 32767

{
next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;
}

void srand(unsigned int seed)

{
}

next = seed;

7.20.3 Memory management functions

The order and contiguity of storage allocated by successive calls toallbe

malloc , andrealloc functions is unspecified. The pointer returned if the allocation
succeeds is suitably aligned so that it may be assigned to a pointer to any type of object
and then used to access such an object or an array of such objects in the space allocated
(until the space is explicitly freed or reallocated). Each such allocation shall yield a
pointer to an object disjoint from any other object. The pointer returned points to the
start (lowest byte address) of the allocated space. If the space cannot be allocated, a null
pointer is returned. If the size of the space requested is zero, the behavior is
implementation-defined: either a null pointer is returned, or the behavior is as if the size
were some nonzero value, except that the returned pointer shall not be used to access an
object. The value of a pointer that refers to freed space is indeterminate.

7.20.2.1 Library 7.20.3

298 Committee Draft — August 3, 1998 WG14/N843

7.20.3.1 Thecalloc function
Synopsis

#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

Description

Thecalloc function allocates space for an arraynafembobjects, each of whose size
issize . The space is initialized to all bits z&5)

Returns
Thecalloc function returns either a null pointer or a pointer to the allocated space.
7.20.3.2 Thdree function
Synopsis

#include <stdlib.h>

void free(void *ptr);
Description
Thefree function causes the space pointed topby to be deallocated, that is, made
available for further allocation. itr is a null pointer, no action occurs. Otherwise, if
the argument does not match a pointer earlier returned bgattee , malloc , or

realloc function, or if the space has been deallocated by a cli#do orrealloc ,
the behavior is undefined.

Returns
Thefree function returns no value.

236) Note that this need not be the same as the representation of floating-point zero or a null pointer
constant.

7.20.3 Library 7.20.3.2

WG14/N843 Committee Draft — August 3, 1998 299

7.20.3.3 Thamalloc function
Synopsis

#include <stdlib.h>
void *malloc(size_t size);

Description

Themalloc function allocates space for an object whose size is specifieddy and
whose value is indeterminate.

Returns

Themalloc function returns either a null pointer or a pointer to the allocated space.
7.20.3.4 Theealloc function

Synopsis

#include <stdlib.h>
void *realloc(void *ptr, size_t size);

Description

Therealloc function changes the size of the object pointed tqtoy to the size
specified bysize . The contents of the object shall be unchanged up to the lesser of the
new and old sizes. If the new size is larger, the value of the newly allocated portion of the
object is indeterminate. [tr is a null pointer, theealloc function behaves like the
malloc function for the specified size. Otherwise,pif does not match a pointer
earlier returned by thealloc , malloc , orrealloc function, or if the space has
been deallocated by a call to thhee orrealloc function, the behavior is undefined.

If the space cannot be allocated, the object pointed tptbyis unchanged. If the
realloc function returns a null pointer whesize is zero andptr is not a null
pointer, the object it pointed to has been freed.

Returns

Therealloc function returns either a null pointer or a pointer to the possibly moved
allocated space. If the object has moy&d, is a pointer that refers to freed space.

7.20.4 Communication with the environment

7.20.3.2 Library 7.20.4

300 Committee Draft — August 3, 1998 WG14/N843

7.20.4.1 Theabort function
Synopsis

#include <stdlib.h>
void abort(void);

Description

The abort function causes abnormal program termination to occur, unless the signal
SIGABRT s being caught and the signal handler does not return. Whether open output
streams are flushed or open streams closed or temporary files removed is implementation-
defined. An implementation-defined form of the statusuccessful terminatiors
returned to the host environment by means of the functiomacséi(SIGABRT)

Returns

Theabort function does not return to its caller.
7.20.4.2 Theatexit function

Synopsis

#include <stdlib.h>
int atexit(void (*func)(void));

Description

Theatexit ~ function registers the function pointed to fanc , to be called without
arguments at normal program termination.

Environmental limits

The implementation shall support the registration of at least 32 functions.
Returns

Theatexit function returns zero if the registration succeeds, nonzero if it fails.
Forward references: theexit function (7.20.4.3).

7.20.4 Library 7.20.4.2

WG14/N843 Committee Draft — August 3, 1998 301

7.20.4.3 Theexit function
Synopsis

#include <stdlib.h>
void exit(int status);

Description

Theexit function causes normal program termination to occur. If more than one call to
theexit function is executed by a program, the behavior is undefined.

First, all functions registered by thgxit function are called, in the reverse order of
their registratiorf3")

Next, all open streams with unwritten buffered data are flushed, all open streams are
closed, and all files created by tnapfile function are removed.

Finally, control is returned to the host environment. If the valustaifis is zero or
EXIT_SUCCESS an implementation-defined form of the staduscessful terminatiois
returned. If the value ddtatus is EXIT_FAILURE, an implementation-defined form
of the statusunsuccessful terminatiors returned. Otherwise the status returned is
implementation-defined.

Returns
Theexit function cannot return to its caller.
7.20.4.4 Thegyetenv function
Synopsis

#include <stdlib.h>

char *getenv(const char *name);
Description

Thegetenv function searches aenvironment list provided by the host environment,
for a string that matches the string pointed tonayne. The set of environment names
and the method for altering the environment list are implementation-defined.

The implementation shall behave as if no library function callgétenv function.
Returns

The getenv function returns a pointer to a string associated with the matched list
member. The string pointed to shall not be modified by the program, but may be
overwritten by a subsequent call to ttenv function. If the specifieshame cannot

be found, a null pointer is returned.

237) Each function is called as many times as it was registered.

7.20.4.2 Library 7.20.4.4

302 Committee Draft — August 3, 1998 WG14/N843

7.20.4.5 Thesystem function
Synopsis

#include <stdlib.h>
int system(const char *string);

Description

If string is a null pointer, thesystem function determines whether the host
environment has aommand processotf string is not a null pointer, theystem

function passes the string pointed to &tying to that command processor to be
executed in a manner which the implementation shall document; this might then cause the
program callingsystem to behave in a non-conforming manner or to terminate.

Returns

If the argument is a null pointer, treystem function returns nonzero only if a
command processor is available. If the argument is not a null pointer, asgsteen
function does return, it returns an implementation-defined value.

7.20.5 Searching and sorting utilities
These utilities make use of a comparison function.

The implementation shall ensure that the second argument of the comparison function
(when called frombsearch), or both arguments (when called frogsort), are
pointers to elements of the array) The first argument when called frobsearch

shall equakey .

The comparison function shall not alter the contents of the array. The implementation
may reorder elements of the array between calls to the comparison function, but shall not
alter the contents of any individual element.

When the same objects (consistingsize bytes, irrespective of their current positions

in the array) are passed more than once to the comparison function, the results shall be
consistent with one another. That is, fmort they shall define a total ordering on the
array, and fobsearch the same object shall always compare the same way with the
key.

A sequence point occurs immediately before and immediately after each call to the
comparison function, and also between any call to the comparison function and any
movement of the objects passed as arguments to that call.

238) That is, if the value passedisthen the following expressions are always non-zero:

((char *)p - (char *)base) % size ==
(char *)p >= (char *)base
(char *)p < (char *)base + nmemb * size

7.20.4.4 Library 7.20.5

WG14/N843 Committee Draft — August 3, 1998 303

7.20.5.1 Thesearch function
Synopsis

#include <stdlib.h>

void *bsearch(const void *key, const void *base,
size_t nmemb, size_t size,
int (*compar)(const void *, const void *));

Description

Thebsearch function searches an arrayrmhembobjects, the initial element of which
is pointed to bybase, for an element that matches the object pointed t&dyy. The
size of each element of the array is specifiediby .

The comparison function pointed to bympar is called with two arguments that point

to thekey object and to an array element, in that order. The function shall return an
integer less than, equal to, or greater than zero ifkéhe object is considered,
respectively, to be less than, to match, or to be greater than the array element. The array
shall consist of: all the elements that compare less than, all the elements that compare
equal to, and all the elements that compare greater tharythebject, in that ordet>®

Returns

Thebsearch function returns a pointer to a matching element of the array, or a null
pointer if no match is found. If two elements compare as equal, which element is
matched is unspecified.

7.20.5.2 Thegsort function
Synopsis

#include <stdlib.h>
void gsort(void *base, size_t nmemb, size_t size,
int (*compar)(const void *, const void *));

Description

Thegsort function sorts an array afmembobijects, the initial element of which is
pointed to bybase . The size of each object is specifieddme .

The contents of the array are sorted into ascending order according to a comparison
function pointed to bycompar, which is called with two arguments that point to the
objects being compared. The function shall return an integer less than, equal to, or
greater than zero if the first argument is considered to be respectively less than, equal to,
or greater than the second.

If two elements compare as equal, their order in the resulting sorted array is unspecified.

239) In practice, the entire array is sorted according to the comparison function.

7.20.5 Library 7.20.5.2

304 Committee Draft — August 3, 1998 WG14/N843

Returns
Thegsort function returns no value.
7.20.6 Integer arithmetic functions
7.20.6.1 Theabs,labs andllabs functions
Synopsis

#include <stdlib.h>

int abs(int j);

long int labs(long int j);

long long int llabs(long long int j);
Description

Theabs, labs , andllabs functions compute the absolute value of an intggédfthe
result cannot be represented, the behavior is undefifed.

Returns

Theabs, labs , andllabs , functions return the absolute value.
7.20.6.2 Thaliv ,Idiv ,andlldiv functions

Synopsis

#include <stdlib.h>

div_t div(int numer, int denom);

Idiv_t div(long int numer, long int denom);

lIdiv_t div(long long int numer, long long int denom));

Description

Thediv , Idiv , andlidiv , functions computeaumer / denom and numer %
denomin a single operation.

Returns

Thediv , Idiv , andlldiv functions return a structure of typev t , Idiv_t , and

lIdiv_t , respectively, comprising both the quotient and the remainder. The structures
shall contain (in either order) the membgu®t (the quotient) andem (the remainder),

each of which have the same type as the argumenter anddenom. If either part of

the result cannot be represented, the behavior is undefined.

240) The absolute value of the most negative number cannot be represented in two’s complement.

7.20.5.2 Library 7.20.6.2

WG14/N843 Committee Draft — August 3, 1998 305

7.20.7 Multibyte character functions

The behavior of the multibyte character functions is affected byGh€TYPEcategory

of the current locale. For a state-dependent encoding, each function is placed into its
initial state by a call for which its character pointer argumentis a null pointer.
Subsequent calls with as other than a null pointer cause the internal state of the function
to be altered as necessary. A call vathas a null pointer causes these functions to return

a nonzero value if encodings have state dependency, and zero otf&hviskanging
theLC_CTYPEcategory causes the shift state of these functions to be indeterminate.

7.20.7.1 Thamblen function

#include <stdlib.h>
int mblen(const char *s, size_t n);

Description

If s is not a null pointer, thenblen function determines the number of bytes contained
in the multibyte character pointed to By Except that the shift state of timebtowc
function is not affected, it is equivalent to

mbtowc((wchar_t *)0, s, n);
The implementation shall behave as if no library function callsnibien function.
Returns

If s is a null pointer, thenblen function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodmgs. If
not a null pointer, thenblen function either returns 0 (8 points to the null character),

or returns the number of bytes that are contained in the multibyte character (if the next
or fewer bytes form a valid multibyte character), or returns -1 (if they do not form a valid
multibyte character).

Forward references: thembtowc function (7.20.7.2).

241) If the locale employs special bytes to change the shift state, these bytes do not produce separate wide
character codes, but are grouped with an adjacent multibyte character.

7.20.7 Library 7.20.7.1

306 Committee Draft — August 3, 1998 WG14/N843

7.20.7.2 Thambtowc function
Synopsis

#include <stdlib.h>

int mbtowc(wchar_t * restrict pwc,
const char * restrict s,
size_tn);

Description

If s is not a null pointer, thenbtowc function determines the number of bytes that are
contained in the multibyte character pointed tosbyt then determines the code for the
value of typewchar_t that corresponds to that multibyte character. (The value of the
code corresponding to the null character is zero.) If the multibyte character is valid and
pwc is not a null pointer, thenbtowc function stores the code in the object pointed to by
pwc. At mostn bytes of the array pointed to bywill be examined.

The implementation shall behave as if no library function callsnii@wc function.
Returns

If s is a null pointer, thenbtowc function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodmgs. If

not a null pointer, thenbtowc function either returns 0 (§ points to the null character),

or returns the number of bytes that are contained in the converted multibyte character (if
the nextn or fewer bytes form a valid multibyte character), or returns -1 (if they do not
form a valid multibyte character).

In no case will the value returned be greater tham the value of thélB_ CUR_MAX
macro.

7.20.7.3 Thewctomb function
Synopsis

#include <stdlib.h>

int wctomb(char *s, wchar_t wchar);
Description

Thewctomb function determines the number of bytes needed to represent the multibyte
character corresponding to the code whose valwehsir (including any change in shift
state). It stores the multibyte character representation in the array object pointesl to by
(if s is not a null pointer). At mos¥IB_ CUR_MABharacters are stored. If the value of
wchar is zero, thavctomb function is left in the initial shift state.

The implementation shall behave as if no library function callsvttemb function.
Returns

If s is a null pointer, thevctomb function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodmgs. If
not a null pointer, theavctomb function returns -1 if the value afchar does not

7.20.7.1 Library 7.20.7.3

WG14/N843 Committee Draft — August 3, 1998 307

correspond to a valid multibyte character, or returns the number of bytes that are
contained in the multibyte character corresponding to the valweradr .

In no case will the value returned be greater than the value BBh€UR_MAMNacro.

7.20.8 Multibyte string functions

The behavior of the multibyte string functions is affected byLtheCTYPEcategory of
the current locale.

7.20.8.1 Thembstowcs function
Synopsis

#include <stdlib.h>

size_t mbstowcs(wchar_t * restrict pwcs,
const char * restrict s,
size_tn);

Description

Thembstowcs function converts a sequence of multibyte characters that begins in the
initial shift state from the array pointed to byinto a sequence of corresponding codes
and stores not more than codes into the array pointed to Ipyvcs. No multibyte
characters that follow a null character (which is converted into a code with value zero)
will be examined or converted. Each multibyte character is converted as if by a call to the
mbtowc function, except that the shift state of thbtowc function is not affected.

No more tham elements will be modified in the array pointed topwcs. If copying
takes place between objects that overlap, the behavior is undefined.

Returns

If an invalid multibyte character is encountered, thbstowcs function returns
(size_t)-1 . Otherwise, thenbstowcs function returns the number of array elements
modified, not including a terminating zero code, if &Y.

242) The array will not be null- or zero-terminated if the value returned is

7.20.7.3 Library 7.20.8.1

308 Committee Draft — August 3, 1998 WG14/N843

7.20.8.2 Thewcstombs function
Synopsis

#include <stdlib.h>

size_t wcstombs(char * restrict s,
const wchar_t * restrict pwcs,
size_tn);

Description

The wcstombs function converts a sequence of codes that correspond to multibyte
characters from the array pointed togaycs into a sequence of multibyte characters that
begins in the initial shift state and stores these multibyte characters into the array pointed
to by s, stopping if a multibyte character would exceed the limih abtal bytes or if a

null character is stored. Each code is converted as if by a call wectbenb function,

except that the shift state of ttvetomb function is not affected.

No more tham bytes will be modified in the array pointed tosyf copying takes place
between objects that overlap, the behavior is undefined.

Returns

If a code is encountered that does not correspond to a valid multibyte character, the
wcstombs function returngsize t)-1 . Otherwise, thavcstombs function returns
the number of bytes modified, not including a terminating null character, #2ny.

7.20.8.1 Library 7.20.8.2

WG14/N843 Committee Draft — August 3, 1998 309

7.21 String handling<string.h>
7.21.1 String function conventions

The headekstring.h> declares one type and several functions, and defines one
macro useful for manipulating arrays of character type and other objects treated as arrays
of character typé*® The type issize_t and the macro iSNULL (both described in

7.17). Various methods are used for determining the lengths of the arrays, but in all cases
achar* orvoid* argument points to the initial (lowest addressed) character of the
array. If an array is accessed beyond the end of an object, the behavior is undefined.

Where an argument declared sige_tn specifies the length of the array for a
function, n can have the value zero on a call to that function. Unless explicitly stated
otherwise in the description of a particular function in this subclause, pointer arguments
on such a call shall still have valid values, as described in 7.1.4. On such a call, a
function that locates a character finds no occurrence, a function that compares two
character sequences returns zero, and a function that copies characters copies zero
characters.

7.21.2 Copying functions
7.21.2.1 Thamemcpyfunction
Synopsis

#include <string.h>

void *memcpy(void * restrict s1,
const void * restrict s2,
size_tn);

Description

The memcpy function copiesn characters from the object pointed to &% into the
object pointed to bgl. If copying takes place between objects that overlap, the behavior
is undefined.

Returns

Thememcpyfunction returns the value efl.

243) See “future library directions” (7.26.11).

7.21 Library 7.21.2.1

310 Committee Draft — August 3, 1998 WG14/N843

7.21.2.2 Thamemmovdunction
Synopsis

#include <string.h>
void *memmove(void *s1, const void *s2, size_t n);

Description

The memmovefunction copiesn characters from the object pointed to 48 into the
object pointed to bysl. Copying takes place as if the characters from the object
pointed to bys2 are first copied into a temporary arrayrofcharacters that does not
overlap the objects pointed to 81 and s2, and then then characters from the
temporary array are copied into the object pointed telhy

Returns

Thememmoveunction returns the value ofl.
7.21.2.3 Thestrcpy function

Synopsis

#include <string.h>
char *strcpy(char * restrict s1,
const char * restrict s2);

Description

Thestrcpy function copies the string pointed to % (including the terminating null
character) into the array pointed to &Y. If copying takes place between objects that
overlap, the behavior is undefined.

Returns

Thestrcpy function returns the value efl.
7.21.2.4 Thestrncpy function
Synopsis

#include <string.h>

char *strncpy(char * restrict s1,
const char * restrict s2,
size_tn);

Description

Thestrncpy function copies not more thancharacters (characters that follow a null
character are not copied) from the array pointed ts2yto the array pointed to by
s1.2%%) If copying takes place between objects that overlap, the behavior is undefined.

244) Thus, if there is no null character in the firstharacters of the array pointed to$8, the result will
not be null-terminated.

7.21.2.1 Library 7.21.2.4

WG14/N843 Committee Draft — August 3, 1998 311

If the array pointed to bg2 is a string that is shorter thancharacters, null characters
are appended to the copy in the array pointed telhyntil n characters in all have been
written.

Returns

Thestrncpy function returns the value ofl.
7.21.3 Concatenation functions
7.21.3.1 Thestrcat function

Synopsis

#include <string.h>
char *strcat(char * restrict s1,
const char * restrict s2);

Description

The strcat function appends a copy of the string pointed tosBy (including the
terminating null character) to the end of the string pointed t®lbyThe initial character
of s2 overwrites the null character at the endsaf. If copying takes place between
objects that overlap, the behavior is undefined.

Returns

Thestrcat function returns the value efl.
7.21.3.2 Thestrncat function
Synopsis

#include <string.h>

char *strncat(char * restrict s1,
const char * restrict s2,
size_t n);

Description

The strncat function appends not more than characters (a null character and
characters that follow it are not appended) from the array pointed<2 Iy the end of
the string pointed to byl . The initial character a2 overwrites the null character at the
end ofsl. A terminating null character is always appended to the reSUItf copying
takes place between objects that overlap, the behavior is undefined.

Returns

Thestrncat function returns the value efl.

245) Thus, the maximum number of characters that can end up in the array pointedsio iby
strlen(s1)+n+1

7.21.2.4 Library 7.21.3.2

312 Committee Draft — August 3, 1998 WG14/N843

Forward references: thestrlen function (7.21.6.3).

7.21.4 Comparison functions

The sign of a nonzero value returned by the comparison functienscmp strcmp
andstrncmp is determined by the sign of the difference between the values of the first
pair of characters (both interpretedusssigned char) that differ in the objects being
compared.

7.21.4.1 Thamemcmgunction
Synopsis

#include <string.h>
int memcmp(const void *s1, const void *s2, size_t n);

Description

The memcmgunction compares the first characters of the object pointed to $iy to
the firstn characters of the object pointed tog#/.246)

Returns

The memcmpfunction returns an integer greater than, equal to, or less than zero,
accordingly as the object pointed todly is greater than, equal to, or less than the object
pointed to bys2.

7.21.4.2 Thestrcmp function
Synopsis

#include <string.h>
int strcmp(const char *s1, const char *s2);

Description

Thestrcmp function compares the string pointed to ddy to the string pointed to by
s2.

Returns

The strcmp function returns an integer greater than, equal to, or less than zero,
accordingly as the string pointed to §¥ is greater than, equal to, or less than the string
pointed to bys2.

246) The contents of “holes” used as padding for purposes of alignment within structure objects are
indeterminate. Strings shorter than their allocated space and unions may also cause problems in
comparison.

7.21.3.2 Library 7.21.4.2

WG14/N843 Committee Draft — August 3, 1998 313

7.21.4.3 Thestrcoll function
Synopsis

#include <string.h>
int strcoll(const char *s1, const char *s2);

Description

The strcoll function compares the string pointed toddy to the string pointed to by

s2, both interpreted as appropriate to & COLLATEcategory of the current locale.
Returns

The strcoll function returns an integer greater than, equal to, or less than zero,

accordingly as the string pointed to §¥ is greater than, equal to, or less than the string
pointed to bys2 when both are interpreted as appropriate to the current locale.

7.21.4.4 Thestrncmp function
Synopsis

#include <string.h>

int strncmp(const char *s1, const char *s2, size_t n);
Description

Thestrncmp function compares not more thancharacters (characters that follow a
null character are not compared) from the array pointed &by the array pointed to
bys2.

Returns

The strncmp function returns an integer greater than, equal to, or less than zero,
accordingly as the possibly null-terminated array pointed telbys greater than, equal
to, or less than the possibly null-terminated array pointed &2 by

7.21.45 Thestrxfrm function
Synopsis

#include <string.h>

size_t strxfrm(char * restrict s1,
const char * restrict s2,
size_tn);

Description

Thestrxfrm function transforms the string pointed to &% and places the resulting
string into the array pointed to sl . The transformation is such that if tsegcmp

function is applied to two transformed strings, it returns a value greater than, equal to, or
less than zero, corresponding to the result otrell function applied to the same

two original strings. No more than characters are placed into the resulting array
pointed to bys1, including the terminating null character.nlfis zero,s1 is permitted to

be a null pointer. If copying takes place between objects that overlap, the behavior is

7.21.4.2 Library 7.21.4.5

314 Committee Draft — August 3, 1998 WG14/N843

undefined.
Returns

The strxfrm function returns the length of the transformed string (not including the
terminating null character). If the value returnechisr more, the contents of the array
pointed to bys1 are indeterminate.

EXAMPLE The value of the following expression is the size of the array needed to hold the
transformation of the string pointed to §y

1 + strxfrm(NULL, s, 0)

7.21.5 Search functions
7.21.5.1 Thememchr function
Synopsis

#include <string.h>
void *memchr(const void *s, int c, size_t n);

Description

The memchr function locates the first occurrence of(converted to arunsigned
char) in the initial n characters (each interpretedwassigned char) of the object
pointed to bys.

Returns

The memchr function returns a pointer to the located character, or a null pointer if the
character does not occur in the object.

7.21.5.2 Thestrchr function
Synopsis

#include <string.h>
char *strchr(const char *s, int c);

Description

The strchr function locates the first occurrence of(converted to ahar) in the
string pointed to bys. The terminating null character is considered to be part of the
string.

Returns

Thestrchr function returns a pointer to the located character, or a null pointer if the
character does not occur in the string.

7.21.4.5 Library 7.21.5.2

WG14/N843 Committee Draft — August 3, 1998 315

7.21.5.3 Thestrcspn function
Synopsis

#include <string.h>
size_t strcspn(const char *s1, const char *s2);

Description

Thestrcspn function computes the length of the maximum initial segment of the string
pointed to bys1l which consists entirely of characterst from the string pointed to by
s2.

Returns

Thestrcspn function returns the length of the segment.
7.21.5.4 Thestrpbrk function

Synopsis

#include <string.h>
char *strpbrk(const char *s1, const char *s2);

Description

Thestrpbrk function locates the first occurrence in the string pointed telbgf any
character from the string pointed to 8.

Returns

Thestrpbrk function returns a pointer to the character, or a null pointer if no character
froms2 occurs insl.

7.21.5.5 Thestrrchr function
Synopsis

#include <string.h>
char *strrchr(const char *s, int c);

Description

The strrchr function locates the last occurrencecof{converted to ahar) in the
string pointed to bys. The terminating null character is considered to be part of the
string.

Returns

Thestrrchr function returns a pointer to the character, or a null pointerdbes not
occur in the string.

7.21.5.2 Library 7.21.5.5

316 Committee Draft — August 3, 1998 WG14/N843

7.21.5.6 Thestrspn function
Synopsis

#include <string.h>
size_t strspn(const char *s1, const char *s2);

Description

Thestrspn function computes the length of the maximum initial segment of the string
pointed to bys1 which consists entirely of characters from the string pointed 82by

Returns

Thestrspn function returns the length of the segment.
7.21.5.7 Thestrstr function

Synopsis

#include <string.h>
char *strstr(const char *s1, const char *s2);

Description

Thestrstr ~ function locates the first occurrence in the string pointed telbpf the
sequence of characters (excluding the terminating null character) in the string pointed to
bys2.

Returns

Thestrstr function returns a pointer to the located string, or a null pointer if the string
is not found. Ifs2 points to a string with zero length, the function retwhs

7.21.5.8 Thestrtok function
Synopsis

#include <string.h>
char *strtok(char * restrict s1,
const char * restrict s2);

Description

A sequence of calls to thetrtok function breaks the string pointed to bY into a
sequence of tokens, each of which is delimited by a character from the string pointed to
by s2. The first call in the sequence has a non-null first argument; subsequent calls in the
sequence have a null first argument. The separator string pointed 4 byay be
different from call to call.

The first call in the sequence searches the string pointedgd by the first character
that isnot contained in the current separator string pointed te2oyif no such character
is found, then there are no tokens in the string pointed $i k3nd thestrtok function
returns a null pointer. If such a character is found, it is the start of the first token.

7.21.5.5 Library 7.21.5.8

WG14/N843 Committee Draft — August 3, 1998 317

Thestrtok function then searches from there for a characterishaintained in the
current separator string. If no such character is found, the current token extends to the
end of the string pointed to sl , and subsequent searches for a token will return a null
pointer. If such a character is found, it is overwritten by a null character, which
terminates the current token. Th&tok function saves a pointer to the following
character, from which the next search for a token will start.

Each subsequent call, with a null pointer as the value of the first argument, starts
searching from the saved pointer and behaves as described above.

The implementation shall behave as if no library function callstitek function.
Returns

Thestrtok function returns a pointer to the first character of a token, or a null pointer
if there is no token.

EXAMPLE 1

#include <string.h>
static char str[] = "?a???b,,#c";

char *t;

t = strtok(str, "?"); It points to the toker'a"

t = strtok(NULL, ","); //'t points to the tokeri'??b"
t = strtok(NULL, "#,"); // t points to the tokeri'c"

t = strtok(NULL, "?"); //'t is a null pointer

7.21.6 Miscellaneous functions
7.21.6.1 Thamemset function
Synopsis

#include <string.h>
void *memset(void *s, int c, size_t n);

Description

The memset function copies the value af (converted to amnsigned char) into
each of the firsh characters of the object pointed today

Returns

Thememset function returns the value sf

7.21.5.8 Library 7.21.6.1

318 Committee Draft — August 3, 1998 WG14/N843

7.21.6.2 Thestrerror function
Synopsis

#include <string.h>
char *strerror(int errnum);

Description

The strerror function maps the number grrnum to a message string. Typically,
the values foerrnum come fromerrno , butstrerror shall map any value of type
int to a message.

The implementation shall behave as if no library function callstileeror ~ function.
Returns

Thestrerror function returns a pointer to the string, the contents of which are locale-
specific. The array pointed to shall not be modified by the program, but may be
overwritten by a subsequent call to 8teerror function.

7.21.6.3 Thestrlen function
Synopsis

#include <string.h>
size_t strlen(const char *s);

Description
Thestrlen function computes the length of the string pointed tgs by
Returns

Thestrlen function returns the number of characters that precede the terminating null
character.

7.21.6.1 Library 7.21.6.3

WG14/N843 Committee Draft — August 3, 1998 319

7.22 Type-generic math<tgmath.h>

The headektgmath.h> includes the headersmath.h> and <complex.h> and
defines severdype-generic macros

7.22.1 Type-generic macros

Of the<math.h> and<complex.h> functions without arf (float) or| (long

double) suffix, several have one or more parameters whose corresponding real type is
double . For each such function, excepiodf, there is a correspondirtgpe-generic
macra?4”) The parameters whose corresponding real typioisle in the function
synopsis aregeneric parameters Use of the macro invokes a function whose
corresponding real type and type domain are determined by the arguments for the generic
parameter$#®)

Use of the macro invokes a function whose generic parameters have the corresponding
real type determined as follows:

— First, if any argument for generic parameters has tgpg double , the type
determined isong double

— Otherwise, if any argument for generic parameters hasdgpble or is of integer
type, the type determineddsuble .

— Otherwise, the type determinedlizat

For each unsuffixed function irkmath.h> for which there is a function in
<complex.h> with the same name except forcaprefix, the corresponding type-
generic macro (for both functions) has the same name as the functioain.h> . The
corresponding type-generic macro fabs andcabs isfabs .

247) Like other function-like macros in Standard libraries, each type-generic macro can be suppressed to
make available the corresponding ordinary function.

248) If the type of the argument is incompatible with the type of the parameter for the selected function, the
behavior is undefined.

7.22 Library 7.22.1

320 Committee Draft — August 3, 1998 WG14/N843

<math.h> <complex.h> type-generic
function function macro
acos cacos acos
asin casin asin
atan catan atan
acosh cacosh acosh
asinh casinh asinh
atanh catanh atanh
cos ccos cos
sin csin sin
tan ctan tan
cosh ccosh cosh
sinh csinh sinh
tanh ctanh tanh
exp cexp exp
log clog log
pow cpow pow
sqrt csqrt sqrt
fabs cabs fabs

If at least one argument for a generic parameter is complex, then use of the macro invokes
a complex function; otherwise, use of the macro invokes a real function.

For each unsuffixed function irkmath.h> without a c-prefixed counterpart in
<complex.h> | the corresponding type-generic macro has the same name as the
function. These type-generic macros are:

atan2 fma llround remainder
cbrt fmax log10 remquo
ceil fmin loglp rint
copysign fmod log2 round

erf frexp logh scalbn
erfc hypot Irint scalbin
exp2 ilogb Iround tgamma
expml ldexp nearbyint trunc

fdim lgamma nextafter

floor Irint nextafterx

If all arguments for generic parameters are real, then use of the macro invokes a real
function; otherwise, use of the macro results in undefined behavior.

For each unsuffixed function kcomplex.h> that is not a-prefixed counterpart to a
function in<math.h> |, the corresponding type-generic macro has the same name as the
function. These type-generic macros are:

carg conj creal
cimag cproj

Use of the macro with any real or complex argument invokes a complex function.

7.22.1 Library 7.22.1

WG14/N843 Committee Draft — August 3, 1998 321

6 EXAMPLE With the declarations

#include <tgmath.h>

int n;

float f;

double d;

long double Id;

float complex fc;

double complex dc;

long double complex Idc;

functions invoked by use of type-generic macros are shown in the following table:

macro use invokes
exp(n) exp(n) , the function
acosh(f) acoshf(f)
sin(d) sin(d) , the function
atan(ld) atanl(ld)
log(fc) clogf(fc)
sqrt(dc) csqrt(dc)
pow(ldc, f) cpowl(ldc, f)
remainder(n, n) remainder(n, n) , the function
nextafter(d, f) nextafter(d, f) , the function
nextafterx(f, Id) nextafterxf(f, Id)
copysign(n, Id) copysignl(n, Id)
ceil(fc) undefined behavior
rint(dc) undefined behavior
fmax(ldc, Id) undefined behavior
carg(n) carg(n) , the function
cproj(f) cprojf(f)
creal(d) creal(d) , the function
cimag(ld) cimagl(ld)
cabs(fc) cabsf(fc)
carg(dc) carg(dc) , the function
cproj(ldc) cprojl(ldc)

7.22.1 Library 7.22.1

322 Committee Draft — August 3, 1998 WG14/N843

7.23 Date and time<time.h>

7.23.1 Components of time

The headextime.h> defines four macros, and declares several types and functions for
manipulating time. Many functions deal withcalendar timethat represents the current
date (according to the Gregorian calendar) and time. Some functions dedbaaith
time, which is the calendar time expressed for some specific time zone, aridawiitht
Saving Timewhich is a temporary change in the algorithm for determining local time.
The local time zone and Daylight Saving Time are implementation-defined.

The macros defined aMJLL (described in 7.17);
CLOCKS_PER_SEC

which expands to a constant expression with the typek t described below, and
which is the number per second of the value returned bgidble function;

_NO_LEAP_SECONDS

which expands to an integral constant expression of itypewith a value outside the
range [-3600, +3600] (described in 7.23.2.4). and

_LOCALTIME

which expands to an integral constant expression of itypewith a value outside the
range [-14400, +14400] (described in 7.23.2.4).

The types declared aseze t (described in 7.17);
clock t
and
time_t
which are arithmetic types capable of representing times; and
struct tm
and
struct tmx
which hold the components of a calendar time, calletbieen-down time

The tm structure shall contain at least the following members, in any order. The
semantics of the members and their normal ranges are expressed in the céffinents.

249) The range [0, 60] fam_sec allows for a positive leap second.

7.23 Library 7.23.1

WG14/N843 Committee Draft — August 3, 1998 323

int tm_sec; Il seconds after the minute — [0, 60]
int tm_min; /l minutes after the hour — [0, 59]
inttm_hour; // hours since midnight — [0, 23]
inttm_mday; // day of the month — [1, 31]

int tm_mon,; /! months since January — [0, 11]
inttm_year; // years since 1900

inttm_wday; // days since Sunday — [0, 6]
inttm_yday; // days since January 1 — [0, 365]
int tm_isdst; // Daylight Saving Time flag

The value otm_isdst is positive if Daylight Saving Time is in effect, zero if Daylight
Saving Time is not in effect, and negative if the information is not available.

Thetmx structure shall contain all the membersstfict tm in a manner such that
all these members are part of a common initial subsequence. In addition, it contains the
members:

inttm_version; // version number
int tm_zone; Il time zone offset in minutes

/[from UTC [-1439, +1439]
inttm_leapsecs; // number of leap seconds applied
void *tm_ext; I extension block
size_ttm_extlen; // size of the extension block

The meaning otm_isdst is also different: it is the positive number of minutes of
offset if Daylight Saving Time is in effect, zero if Daylight Saving Time is not in effect,
and -1 if the information is not available. A positive valuetforzone indicates a time

that is ahead of Coordinated Universal Time (UTC). The implementation or a future
version of this International Standard may include further members in a separate object.
If so, thetm_ext member shall point to this object and the extlen object shall be

its size. Otherwise, tham_ext member shall be a null pointer and the value of the
tm_extlen object is unspecified.

7.23.2 Time manipulation functions

7.23.1 Library 7.23.2

324 Committee Draft — August 3, 1998 WG14/N843

7.23.2.1 Theclock function
Synopsis

#include <time.h>
clock_t clock(void);

Description
Theclock function determines the processor time used.
Returns

Theclock function returns the implementation’s best approximation to the processor
time used by the program since the beginning of an implementation-defined era related
only to the program invocation. To determine the time in seconds, the value returned by
theclock function should be divided by the value of the maCt®CKS_PER_SEJf

the processor time used is not available or its value cannot be represented, the function
returns the valulock_t)-1 259

7.23.2.2 Thdifftime function
Synopsis

#include <time.h>
double difftime(time_t timel, time_t time0);

Description

Thedifftime function computes the difference between two calendar tinesi -
timeO .

Returns
Thedifftime function returns the difference expressed in secondsiaside .

250) In order to measure the time spent in a prograngltiel function should be called at the start of
the program and its return value subtracted from the value returned by subsequent calls.

7.23.2 Library 7.23.2.2

WG14/N843 Committee Draft — August 3, 1998 325

7.23.2.3 Thanmktime function
Synopsis

#include <time.h>
time_t mktime(struct tm *timeptr);

Description

The mktime function converts the broken-down time, expressed as local time, in the
structure pointed to biimeptr into a calendar time value with the same encoding as
that of the values returned by thme function. The original values of then_wday
andtm_yday components of the structure are ignored, and the original values of the
other components are not restricted to the ranges indicated &bbv@n successful
completion, the values of thien_wday andtm_yday components of the structure are

set appropriately, and the other components are set to represent the specified calendar
time, but with their values forced to the ranges indicated above; the final value of
tm_mday is not set untitm_mon andtm_year are determined.

The normalization process shall be as described in 7.23.2.6.

If the call is successful, a second call tortiigime function with the resultingtruct

tm value shall always leave it unchanged and return the same value as the first call.
Furthermore, if the normalized time is exactly representabldiamat value, then the
normalized broken-down time and the broken-down time generated by converting the
result of themktime function by a call tdocaltime shall be identical.

Returns

The mktime function returns the specified calendar time encoded as a value of type
time_t . If the calendar time cannot be represented, the function returns the value
(time_t)-1

EXAMPLE What day of the week is July 4, 20017

#include <stdio.h>

#include <time.h>

static const char *const wday[] = {
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "-unknown-"

2

struct tm time_str;

* %

251) Thus, a positive or zero value ton_isdst causes thenktime function to presume initially that
Daylight Saving Time, respectively, is or is not in effect for the specified time. A negative value
causes it to attempt to determine whether Daylight Saving Time is in effect for the specified time.

7.23.2.2 Library 7.23.2.3

326 Committee Draft — August 3, 1998 WG14/N843

time_str.tm_year = 2001 - 1900;
time_str.tm_mon =7 -1
time_str.tm_mday = 4;
time_str.tm_hour
time_str.tm_min
time_str.tm_sec
time_str.tm_isdst = -1;
if (mktime(&time_str) == (time_t)-1)
time_str.tm_wday = 7,
printf("%s\n", wday[time_str.tm_wday]);

0;
0;
1

7.23.2.4 Thamkxtime function
Synopsis

#include <time.h>
time_t mkxtime(struct tmx *timeptr);

Description

Themkxtime function has the same behavior and result agitane function except
that it takes into account the values of the additional membesteuat tmx

If the value of tham_version member is not 1, the behavior is undefined. If the
implementation cannot determine the relationship between local time and UTC, it shall
set thetm_zone member of the pointed-to structure toOCALTIME Otherwise, if the
tm_zone member was LOCALTIME it shall be set to the offset of local time from
UTC, including the effects of the value of tlhe_isdst member; otherwise, the
original value of them_isdst member does not affect the result.

If the tm_leapsecs member is equal to NO LEAP SECONDSthen the
implementation shall determine the number of leap seconds that apply and set the
member accordingly (or use 0 if it cannot determine it); otherwise, it shall use the number
of leap seconds given. Thm_leapsecs member shall then be set to the number of
leap seconds actually applied to produce the value represented by the structure, or to
_NO_LEAP_SECONDi&it was not possible to determine it.

If the call is successful, a second call to thkxtime function with the resulting
struct tmx value shall always leave it unchanged and return the same value as the
first call. Furthermore, if the normalized time is exactly representable taseat

value, then the normalized broken-down time and the broken-down time generated by
converting the result of thekxtime function by a call t@onetime (with zone set to

the value of thém_zone member) shall be identical.

Returns

The mkxtime function returns the specified calendar time encoded as a value of type
time_t . If the calendar time cannot be represented, the function returns the value
(time_t)-1

7.23.2.3 Library 7.23.2.4

WG14/N843 Committee Draft — August 3, 1998 327

7.23.2.5 Thdime function
Synopsis

#include <time.h>

time_t time(time_t *timer);
Description

Thetime function determines the current calendar time. The encoding of the value is
unspecified.

Returns

The time function returns the implementation’s best approximation to the current
calendar time. The valugime_t)-1 is returned if the calendar time is not available.
If timer is not a null pointer, the return value is also assigned to the object it points to.

7.23.2.6 Normalization of broken-down times

A broken-down time is normalized by thekxtime function in the following manner. A
broken-down time is normalized by thektime function in the same manner, but as if
thestruct tm structure had been replaced bstiauct tmx structure containing the
same values except:

tm_version is1

tm_zone is_LOCALTIME

tm_leapsecs is_NO_LEAP_SECONDS

tm_isdst is =1, 0, or an implementation-defined positive value according to

whether the original member is less than, equal to, or greater than zero

If any of the following members is outside the indicated range (wheres
LONG_MAIB), the behavior is undefined:

tm_year [-L/366, H./366]

tm_mon [-L/31, H./31]

tm_mday [-L, +L]

tm_hour [-L/3600, 4./3600]

tm_min [-L/60, H./60]

tm_sec [-L, +L]

tm_leapsecs [-L,+L]or NO_LEAP_SECONDS
tm_zone [-L/60, H./60]

tm_isdst [-L/60, H./60] or_LOCALTIME

Thetm_version member shall be 1.

7.23.2.4 Library 7.23.2.6

328 Committee Draft — August 3, 1998 WG14/N843

3 ValuesS andD shall be determined as follows:

#define QUOT(a,b) ((a)>0 ? (a)/(b) : -((b)-(a)-1)/(b)))
#define REM(a,b) ((a)-(b)*QUOT (a,b))

SS =tm_hour*3600 + tm_min*60 + tm_sec +
(tm_leapsecs == _NO_LEAP_SECONDS ? X1 :
tm_leapsecs) -
(tm_zone == _LOCALTIME ? X2 : tm_zone) * 60;

/I X1 is the appropriate number of leap seconds, determined by
/[the implementation, or O if it cannot be determined.

Il X2 is the appropriate offset from local time to UTC,

/I determined by the implementation, or

/[(tm_isdst >= 0 ? tm_isdst : 0)

/I if the offset cannot be determined

REM(tm_mon, 12);
tm_year + 1900 + QUOT(tm_mon, 12);
Y- M<2?1:0);
Y*365 + (Z/400)*97 + (Z%400)/4 +
M[(int []){0,31,59,90,120,151,181,212,243,273,
304,335} +
tm_mday + QUOT(SS, 86400);
S REM(SS, 86400);

4 The normalized broken-down time shall produce the same valugsanél D (though
possibly different values & Y, andZ) as the original broken-down tinfe?

ON<Z
[T L T

7.23.3 Time conversion functions

1 Except for thestrftime and strfxtime functions, these functions each return a
pointer to one of two types of static objects: a broken-down time structure or an array of
char . Execution of any of the functions that return a pointer to one of these object types
may overwrite the information in any object of the same type pointed to by the value
returned from any previous call to any of them. The implementation shall behave as if no
other library functions call these functions.

252) The effect of the alve rules is to consistently use the Gregorian calendar, regardless of which
calendar was in use in which year. In particular, the years 1100 and —-300 are not leap years, while the
years 1200 and -400 are (these 4 years correspdand ye@ar values of -800, —2200, -700, and
—2300 respectively, and the last of these is 401 B.C.E.). In the normalized broken-down time,

tm_wday is equal taQUOT(D-2,7) .

7.23.2.6 Library 7.23.3

WG14/N843 Committee Draft — August 3, 1998 329

7.23.3.1 Theasctime function
Synopsis

1 #include <time.h>
char *asctime(const struct tm *timeptr);

Description

2 Theasctime function converts the broken-down time in the structure pointed to by
timeptr into a string in the form

Sun Sep 16 01:03:52 1973\n\0
using the equivalent of the following algorithm.
char *asctime(const struct tm *timeptr)

{
static const char wday _name[7][3] ={
"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
I3
static const char mon_name[12][3] = {
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
I3
static char result[26];
sprintf(result, "%.3s %.35%3d %.2d:%.2d:%.2d %d\n",
wday_name[timeptr->tm_wday],
mon_name[timeptr->tm_mon],
timeptr->tm_mday, timeptr->tm_hour,
timeptr->tm_min, timeptr->tm_sec,
1900 + timeptr->tm_year);
return result;
}
Returns

3 Theasctime function returns a pointer to the string.

7.23.3 Library 7.23.3.1

330 Committee Draft — August 3, 1998 WG14/N843

7.23.3.2 Thectime function
Synopsis

#include <time.h>
char *ctime(const time_t *timer);

Description

Thectime function converts the calendar time pointed tdibher to local time in the
form of a string. It is equivalent to

asctime(localtime(timer))
Returns

The ctime function returns the pointer returned by #ectime function with that
broken-down time as argument.

Forward references: thelocaltime function (7.23.3.4).
7.23.3.3 Thggmtime function
Synopsis

#include <time.h>
struct tm *gmtime(const time_t *timer);

Description

Thegmtime function converts the calendar time pointed totinyer into a broken-
down time, expressed as UTC.

Returns

Thegmtime function returns a pointer to the broken-down time, or a null pointer if the
specified time cannot be converted to UTC.

7.23.3.4 Thdocaltime function
Synopsis

#include <time.h>
struct tm *localtime(const time_t *timer);

Description

The localtime function converts the calendar time pointed totioger into a
broken-down time, expressed as local time.

Returns

Thelocaltime function returns a pointer to the broken-down time, or a null pointer if
the specified time cannot be converted to local time.

7.23.3.1 Library 7.23.3.4

WG14/N843 Committee Draft — August 3, 1998 331

7.23.3.5 Thestrftime function
Synopsis

#include <time.h>

size_t strftime(char * restrict s,
size_t maxsize,
const char * restrict format,
const struct tm * restrict timeptr);

Description

Thestrftime function places characters into the array pointed t® &y controlled by

the string pointed to bformat . The format shall be a multibyte character sequence,
beginning and ending in its initial shift state. Tleemat string consists of zero or
more conversion specifiers and ordinary multibyte characters. A conversion specifier
consists of &ocharacter, possibly followed by @& or O modifier character (described
below), followed by a character that determines the behavior of the conversion specifier.
All ordinary multibyte characters (including the terminating null character) are copied
unchanged into the array. If copying takes place between objects that overlap, the
behavior is undefined. No more thawaxsize characters are placed into the array.

Each conversion specifier is replaced by appropriate characters as described in the
following list. The appropriate characters are determined using@h&IME category
of the current locale and by the values of zero or more members of the broken-down time
structure pointed to byimeptr , as specified in brackets in the description. If any of
the specified values is outside the normal range, the characters stored are unspecified.
%a is replaced by the locale’s abbreviated weekday naime.wday |
%A is replaced by the locale’s full weekday namen_[wday]
%b is replaced by the locale’s abbreviated month narme. rhon]
%B is replaced by the locale’s full month namén[mon]
%c is replaced by the locale’s appropriate date and time representation. [all
specified in 7.23.1]
%C is replaced by the year divided by 100 and truncated to an integer, as a decimal
number 00-99). [tm_year]
%d is replaced by the day of the month as a decimal nurfkes3Q). [tm_mday]
%D is equivalent to %m/%d/%y. [tm_mon, tm_mday, tm_year]
%e is replaced by the day of the month as a decimal numb&l(); a single digit
is preceded by a spacam[mday]
%F is equivalent to %Y-%m-%d(the 1SO 8601 date format). trh_year ,
tm_mon, tm_mday]
%g is replaced by the last 2 digits of the week-based year (see below) as a decimal
number 00-99). [tm_year ,tm_wday, tm_yday]
%G is replaced by the week-based year (see below) as a decimal number (e.g.,
1997). fm_year ,tm_wday, tm_yday]
%h is equivalent to %l3'. [tm_mon]
%H is replaced by the hour (24-hour clock) as a decimal number2Q3).
[tm_hour]

7.23.3.4 Library 7.23.3.5

332

%I
%)
%m
%M
%n
%p
Obr
%R
%S
%t
%T
%u
%U
%V
%w
%W
%X
%X
%y
%Y
%z

%Z

%%

Committee Draft — August 3, 1998 WG14/N843

is replaced by the hour (12-hour clock) as a decimal numberl1@).
[tm_hour]

is replaced by the day of the year as a decimal nurob&r-366). [tm_yday]

is replaced by the month as a decimal numbgr12). [tm_mon]

is replaced by the minute as a decimal numd@r59). [tm_min]

is replaced by a new-line character.

is replaced by the locale’s equivalent of the AM/PM designations associated
with a 12-hour clock. tm_hour]

is replaced by the locale’s 12-hour clock timan [hour ,tm_min , tm_sec]

is equivalent to %H:%N [tm_hour ,tm_min]

is replaced by the second as a decimal nun@i2rg0). [tm_sec |

is replaced by a horizontal-tab character.

is equivalent to %H:%M:%3 (the 1SO 8601 time format). tin_hour ,
tm_min , tm_sec]

is replaced by the ISO 8601 weekday as a decimal nunibét),(where
Monday is 1. {m_wday |

is replaced by the week number of the year (the first Sunday as the first day of
week 1) as a decimal numb@053). [tm_year ,tm_wday, tm_yday]

Is replaced by the ISO 8601 week number (see below) as a decimal number
(01-53). [tm_year ,tm_wday, tm_yday |

is replaced by the weekday as a decimal numbe6); where Sunday is O.
[tm_wday]

is replaced by the week number of the year (the first Monday as the first day of
week 1) as a decimal numb@&053). [tm_year ,tm_wday, tm_yday]

Is replaced by the locale’s appropriate date representation. [all specified in
7.23.1]

is replaced by the locale’s appropriate time representation. [all specified in
7.23.1]

is replaced by the last 2 digits of the year as a decimal nurobe99).
[tm_year]

IS replaced by the year as a decimal number (997). [tm_year]

is replaced by the offset from UTC in the 1ISO 8601 form&430” (meaning

4 hours 30 minutes behind UTC, west of Greenwich), or by no characters if no
time zone is determinabletnj_isdst |

is replaced by the locale’s time zone name or abbreviation, or by no characters if
no time zone is determinabletn{_isdst]

is replaced byb

Some conversion specifiers can be modified by the inclusion dt treO modifier
characters to indicate an alternative format or specification. If the alternative format or
specification does not exist for the current locale, the modifier is ignored.

%Ec is replaced by the locale’s alternative date and time representation.

%ECis replaced by the name of the base year (period) in the locale’s alternative

representation.

%EX is replaced by the locale’s alternative date representation.
%EX is replaced by the locale’s alternative time representation.

7.23.3.5

Library 7.23.3.5

WG14/N843 Committee Draft — August 3, 1998 333

%Ey is replaced by the offset frofEC (year only) in the locale’s alternative
representation.

%EY is replaced by the locale’s full alternative year representation.

%O0dis replaced by the day of the month, using the locale’s alternative numeric
symbols (filled as needed with leading zeros, or with leading spaces if there is
no alternative symbol for zero).

%Oeis replaced by the day of the month, using the locale’s alternative numeric
symbols (filled as needed with leading spaces).

%OMHis replaced by the hour (24-hour clock), using the locale’s alternative numeric
symbols.

%0l is replaced by the hour (12-hour clock), using the locale’s alternative numeric
symbols.

%0Omis replaced by the month, using the locale’s alternative numeric symbols.

%OMis replaced by the minutes, using the locale’s alternative numeric symbols.

%O0Sis replaced by the seconds, using the locale’s alternative numeric symbols.

%O0uis replaced by the ISO 8601 weekday as a number in the locale’s alternative
representation, where Monday is 1.

%O0Uis replaced by the week number, using the locale’s alternative numeric symbols.

%O0Vis replaced by the ISO 8601 week number, using the locale’s alternative numeric
symbols.

%Owis replaced by the weekday as a number, using the locale’s alternative numeric
symbols.

%Ouis replaced by the week number of the year, using the locale’s alternative
numeric symbols.

%0y is replaced by the last 2 digits of the year, using the locale’s alternative numeric
symbols.

%g %G and%Vgive values according to the ISO 8601 week-based year. In this system,
weeks begin on a Monday and week 1 of the year is the week that includes January 4th,
which is also the week that includes the first Thursday of the year, and is also the first
week that contains at least four days in the year. If the first Monday of January is the
2nd, 3rd, or 4th, the preceding days are part of the last week of the preceding year; thus,
for Saturday 2nd January 199%Gis replaced byl998 and%Vis replaced by3. If
December 29th, 30th, or 31st is a Monday, it and any following days are part of week 1 of
the following year. Thus, for Tuesday 30th December 198ds replaced by1998 and

%\Vis replaced byl.

If a conversion specifier is not one of the above, the behavior is undefined.

In the"C" locale, theE and O modifiers are ignored and the replacement strings for the
following specifiers are:
%a the first three characters @A

%A one of “Sunday ", “ Monday”, ..., “ Saturday ”.
%b the first three characters @B
%B one of “January 7, “ February 7, ..., " December”.

%c equivalent to %A %B %d %T %Y.
%p one of “ant’ or “ pnT.

7.23.3.5 Library 7.23.3.5

334 Committee Draft — August 3, 1998 WG14/N843

%r equivalent to %0l:%M:%S %p’.
%x equivalent to %A %B %d %Y.
%X equivalent t&6T

%Z implementation-defined.

Returns

If the total number of resulting characters including the terminating null character is not
more thanmaxsize , the strftime function returns the number of characters placed
into the array pointed to by not including the terminating null character. Otherwise,
zero is returned and the contents of the array are indeterminate.

7.23.3.6 Thestrfxtime function
Synopsis

#include <time.h>
size_t strixtime(char * restrict s,
size_t maxsize,
const char * restrict format,
const struct tmx * restrict timeptr);

Description

The behavior and result of thetrfxtime is identical to that of thestrftime
function, except that themeptr parameter has a different type, and %heand %Z
conversion specifiers dependtom zone in addition totm_isdst

7.23.3.7 Thezonetime function
Synopsis

#include <time.h>
struct tmx *zonetime(const time_t *timer, int zone);

Description

Thezonetime function converts the calendar time pointed tdilher into a broken-

down time as represented in the specified time zone.tiiheersion member is set

to 1. If the implementation cannot determine the relationship between local time and
UTC, it shall set theam _zone member to LOCALTIME otherwise, it shall set the
tm_zone member to the value @bne unless the latter isSLOCALTIME, in which case

it shall set it to the offset of local time from UTC. The value shall include the effect of
Daylight Saving Time, if in effect. Thén_leapsecs member shall be set to the
number of leap seconds (the UTC-UT1 offset) applied in the f&3uif it can be
determined, or to the valueNO_LEAP_SECONDS it cannot (and so none were
applied).

253) If the tm_sec member is set to 60, that leap second shall not be included in the value of
tm_leapsecs

7.23.3.5 Library 7.23.3.7

WG14/N843 Committee Draft — August 3, 1998 335

Returns

Thezonetime function returns a pointer to the broken-down time, or a null pointer if
the specified time cannot be converted to the specified time zone.

7.23.3.7 Library 7.23.3.7

336 Committee Draft — August 3, 1998 WG14/N843

7.24 Extended multibyte and wide-character utilitiescwchar.h>

7.24.1 Introduction

The headexwchar.h> declares four data types, one tag, four macros, and many

functions2>¥

The types declared aneehar_t andsize t (both described in 7.17);
mbstate_t

which is an object type other than an array type that can hold the conversion state
information necessary to convert between sequences of multibyte characters and wide
characters;

wint_t

described in 7.25.1; and
struct tm

and
struct tmx

which are declared as incomplete structure types, the contents of which are described in
7.23.1.

The macros defined akJLL (described in 7.17);

WCHAR_MAX

which is the maximum value representable by an object ofwgpar t ;25
WCHAR_MIN

which is the minimum value representable by an object ofwigbar t ; and
WEOF

described in 7.25.1.
The functions declared are grouped as follows:

— Functions that perform input and output of wide characters, or multibyte characters,
or both;

— Functions that provide wide-string numeric conversion;

— Functions that perform general wide-string manipulation;

254) See “future library directions” (7.26.12).

255) The value8VCHAR_MAadWCHAR_MINMo not necessarily correspond to members of the extended
character set.

7.24 Library 7.24.1

WG14/N843 Committee Draft — August 3, 1998 337

— Functions for wide-string date and time conversion; and

— Functions that provide extended capabilities for conversion between multibyte and
wide-character sequences.

Unless explicitly stated otherwise, if the execution of a function described in this
subclause causes copying to take place between objects that overlap, the behavior is
undefined.

7.24.2 Formatted wide-character input/output functions

The formatted wide-character input/output functféfs shall behave as if there is a
sequence point after the actions associated with each specifier.

7.24.2.1 Thdwprintf function
Synopsis

#include <stdio.h>
#include <wchar.h>
int fwprintf(FILE * restrict stream,
const wchar_t * restrict format, ...);

Description

The fwprintf function writes output to the stream pointed to digeam , under

control of the wide string pointed to ligrmat that specifies how subsequent arguments

are converted for output. If there are insufficient arguments for the format, the behavior
is undefined. If the format is exhausted while arguments remain, the excess arguments
are evaluated (as always) but are otherwise ignored. fWimentf function returns

when the end of the format string is encountered.

The format is composed of zero or more directives: ordinary wide character®),(not
which are copied unchanged to the output stream; and conversion specifications, each of
which results in fetching zero or more subsequent arguments, converting them, if
applicable, according to the corresponding conversion specifier, and then writing the
result to the output stream.

Each conversion specification is introduced by the wide char#ct&fter the % the
following appear in sequence:

— Zero or moreflags (in any order) that modify the meaning of the conversion
specification.

— An optional minimumfield width If the converted value has fewer wide characters
than the field width, it is padded with spaces (by default) on the left (or right, if the
left adjustment flag, described later, has been given) to the field width. The field
width takes the form of an asterisdescribed later) or a decimal inte§§7r).

256) Thefwprintf functions perform writes to memory for thenspecifier.

257) Note thab is taken as a flag, not as the beginning of a field width.

7.24.1 Library 7.24.2.1

338 Committee Draft — August 3, 1998 WG14/N843

— An optionalprecisionthat gives the minimum number of digits to appear fordthe,

0, U, X, andX conversions, the number of digits to appear after the decimal-point
wide character fora, A, e, E, f, and F conversions, the maximum number of
significant digits for theg and G conversions, or the maximum number of wide
characters to be written from a stringsirconversions. The precision takes the form

of a period () followed either by an asterisk (described later) or by an optional
decimal integer; if only the period is specified, the precision is taken as zero. If a
precision appears with any other conversion specifier, the behavior is undefined.

— An optionallength modifietthat specifies the size of the argument.

— A conversion specifiewide character that specifies the type of conversion to be
applied.

As noted above, a field width, or precision, or both, may be indicated by an asterisk. In
this case, annt argument supplies the field width or precision. The arguments
specifying field width, or precision, or both, shall appear (in that order) before the
argument (if any) to be converted. A negative field width argument is taken #ag
followed by a positive field width. A negative precision argument is taken as if the
precision were omitted.

The flag wide characters and their meanings are:

- The result of the conversion is left-justified within the field. (It is right-justified if
this flag is not specified.)

+ The result of a signed conversion always begins with a plus or minus sign. (It
begins with a sign only when a negative value is converted if this flag is not
specified 3°8)

space If the first wide character of a signed conversion is not a sign, or if a signed
conversion results in no wide characters, a space is prefixed to the result. If the
spaceand+ flags both appear, thepaceflag is ignored.

The result is converted to an “alternative form”. Kwmrconversion, it increases
the precision, if and only if necessary, to force the first digit of the result to be a
zero (if the value and precision are both 0, a single 0 is printed)x Ear X)
conversion, a nonzero result ttas (or 0X) prefixed to it. Fom, A e, E, f,F, g,
and G conversions, the result always contains a decimal-point wide character,
even if no digits follow it. (Normally, a decimal-point wide character appears in
the result of these conversions only if a digit follows it.) §@ndG conversions,
trailing zeros arenot removed from the result. For other conversions, the
behavior is undefined.

0 Ford,i, o0, u,Xx, X a, A e, E f,F, g, andG conversions, leading zeros
(following any indication of sign or base) are used to pad to the field width; no
space padding is performed. If tlleand - flags both appear, theé flag is

258) The results of all floating conversions of a negative zero, and of negative values that round to zero,
include a minus sign.

7.24.2.1 Library 7.24.2.1

WG14/N843 Committee Draft — August 3, 1998 339

ignored. Ford, i, 0, u, X, andX conversions, if a precision is specified, the
flag is ignored. For other conversions, the behavior is undefined.

The length modifiers and their meanings are:

hh Specifies that a followind, i , 0, u, X, or X conversion specifier applies to a
signed char or unsigned char argument (the argument will have
been promoted according to the integer promotions, but its value shall be
converted tasigned char orunsigned char before printing); or that
a following n conversion specifier applies to a pointer teigned char
argument.

h Specifies that a followind, i , 0, u, x, or X conversion specifier applies to a
short int or unsigned short int argument (the argument will
have been promoted according to the integer promotions, but its value shall
be converted tghort int or unsigned short int before printing);
or that a followingn conversion specifier applies to a pointer tshart
int argument.

I (ell) Specifies that a followind, i , 0, u, X, or X conversion specifier applies to a
long int or unsigned long int argument; that a followingn
conversion specifier applies to a pointer twrg int argument; that a
following ¢ conversion specifier applies tovant_t argument; that a
following s conversion specifier applies to a pointer towahar t
argument; or has no effect on a followiagA, e, E, f , F, g, or Gconversion

specifier.

Il (ell-ell) Specifies that a followingd, i , 0, u, x, or X conversion specifier applies to a
long long int or unsigned long long int argument; or that a
following n conversion specifier applies to a pointer toray long int
argument.

j Specifies that a following, i , 0, u, X, or X conversion specifier applies to

anintmax_t oruintmax_t argument; or that a following conversion
specifier applies to a pointer to @mtmax_t argument.

z Specifies that a followind, i , 0, u, x, or X conversion specifier applies to a
size_t or the corresponding signed integer type argument; or that a
following n conversion specifier applies to a pointer to a signed integer type
corresponding tgize_t argument.

t Specifies that a followind, i , 0, u, X, or X conversion specifier applies to a
ptrdiff_t or the corresponding unsigned integer type argument; or that a
following n conversion specifier applies to a pointer tgtediff t
argument.

L Specifies that a followin@g, A, e, E, f, F, g, or G conversion specifier

applies to dong double argument.

If a length modifier appears with any conversion specifier other than as specified above,
the behavior is undefined.

7.24.2.1 Library 7.24.2.1

340

Committee Draft — August 3, 1998 WG14/N843

The conversion specifiers and their meanings are:

d,i

0,U,X, X

f,F

e,E

Theint argument is converted to signed decimal in the $tyldddd. The
precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it is expanded with
leading zeros. The default precision is 1. The result of converting a zero
value with a precision of zero is no wide characters.

Theunsigned int argument is converted to unsigned octgl (nsigned
decimal (1), or unsigned hexadecimal notationdr X) in the styledddd, the

letters abcdef are used forx conversion and the lette®SBCDEFfor X
conversion. The precision specifies the minimum number of digits to appear;
if the value being converted can be represented in fewer digits, it is expanded
with leading zeros. The default precision is 1. The result of converting a
zero value with a precision of zero is no wide characters.

A double argument representing a (finite) floating-point number is
converted to decimal notation in the stjAgddd. ddd where the number of
digits after the decimal-point wide character is equal to the precision
specification. If the precision is missing, it is taken as 6; if the precision is
zero and thet flag is not specified, no decimal-point wide character appears.
If a decimal-point wide character appears, at least one digit appears before it.
The value is rounded to the appropriate number of digits.

A double argument representing an infinity is converted in one of the styles
[- Jinf or [-]infinity — which style is implementation-defined. A
double argument representing a NaN is converted in one of the styles
[- Jnan or [- Jnan(n-wchar-sequende— which style, and the meaning of
any n-wchar-sequencge is implementation-defined. Thd= conversion
specifier producebNF , INFINITY , or NANinstead ofinf , infinity , or

nan, respectively>?)

A double argument representing a (finite) floating-point number is
converted in the styl¢-]d. ddde+dd, where there is one digit (which is
nonzero if the argument is nonzero) before the decimal-point wide character
and the number of digits after it is equal to the precision; if the precision is
missing, it is taken as 6; if the precision is zero andttfiag is not specified,

no decimal-point wide character appears. The value is rounded to the
appropriate number of digits. THeconversion specifier produces a number
with E instead ofe introducing the exponent. The exponent always contains

at least two digits, and only as many more digits as necessary to represent the
exponent. If the value is zero, the exponent is zero.

A double argument representing an infinity or NaN is converted in the style
of anf or F conversion specifier.

259) When applied to infinite and NaN values, ther, andspaceflag wide characters have their usual
meaning; theét and0 flag wide characters have no effect.

7.24.2.1

Library 7.24.2.1

WG14/N843 Committee Draft — August 3, 1998 341

9,G

a,A

A double argument representing a (finite) floating-point number is
converted in styld or e (or in styleF or E in the case of & conversion
specifier), with the precision specifying the number of significant digits. If
the precision is zero, it is taken as 1. The style used depends on the value
converted; stylee (or E) is used only if the exponent resulting from such a
conversion is less than —4 or greater than or equal to the precision. Trailing
zeros are removed from the fractional portion of the result unlessfthg is
specified; a decimal-point wide character appears only if it is followed by a
digit.

A double argument representing an infinity or NaN is converted in the style
of anf or F conversion specifier.

A double argument representing a (finite) floating-point number is
converted in the styl¢—]0xh. hhhhpxd, where there is one hexadecimal
digit (which is nonzero if the argument is a normalized floating-point number
and is otherwise unspecified) before the decimal-point wide ch&fiteerd

the number of hexadecimal digits after it is equal to the precision; if the
precision is missing anBLT_RADIX is a power of 2, then the precision is
sufficient for an exact representation of the value; if the precision is missing
and FLT_RADIX is not a power of 2, then the precision is sufficient to
distinguist®?) values of typedouble , except that trailing zeros may be
omitted; if the precision is zero and theflag is not specified, no decimal-
point wide character appears. The letmisdef are used foa conversion

and the lettersABCDEFfor A conversion. TheA conversion specifier
produces a number witk and P instead ofx andp. The exponent always
contains at least one digit, and only as many more digits as necessary to
represent the decimal exponent of 2. If the value is zero, the exponent is
zero.

A double argument representing an infinity or NaN is converted in the style
of anf or F conversion specifier.

If no | length modifier is present, thet argument is converted to a wide
character as if by callingtowc and the resulting wide character is written.

If an | length modifier is present, theint_t argument is converted to
wchar_t and written.

260) Binary implementations can choose the hexadecimal digit to the left of the decimal-point wide

character so that subsequent digits align to nibble (4-bit) boundaries.

261)The precisionp is sufficient to distinguish values of the source typé.ﬁi‘o_1 > b" whereb is

7.24.2.1

FLT_RADIX andn is the number of bagedigits in the significand of the source type. A smafler
might suffice depending on the implementation’s scheme for determining the digit to the left of the
decimal-point wide character.

Library 7.24.2.1

10

11

12

342

%

Committee Draft — August 3, 1998 WG14/N843

If nol length modifier is present, the argument shall be a pointer to the initial
element of a character array containing a multibyte character sequence
beginning in the initial shift state. Characters from the array are converted as
if by repeated calls to thenbrtowc function, with the conversion state
described by ammbstate t object initialized to zero before the first
multibyte character is converted, and written up to (but not including) the
terminating null wide character. If the precision is specified, no more than
that many wide characters are written. If the precision is not specified or is
greater than the size of the converted array, the converted array shall contain a
null wide character.

If anl length modifier is present, the argument shall be a pointer to the initial
element of an array ofichar_t type. Wide characters from the array are
written up to (but not including) a terminating null wide character. If the
precision is specified, no more than that many wide characters are written. If
the precision is not specified or is greater than the size of the array, the array
shall contain a null wide character.

The argument shall be a pointer ¥oid . The value of the pointer is
converted to a sequence of printable wide characters, in an implementation-
defined manner.

The argument shall be a pointer to signed integer into whighiiten the
number of wide characters written to the output stream so far by this call to
fwprintt . No argument is converted, but one is consumed. If the
conversion specification includes any flags, a field width, or a precision, the
behavior is undefined.

A %wide character is written. No argument is converted. The complete
conversion specification shall B&%

If a conversion specification is invalid, the behavior is undefiffddf any argument is
not the correct type for the corresponding coversion specification, the behavior is

undefined.

In no case does a nonexistent or small field width cause truncation of a field; if the result
of a conversion is wider than the field width, the field is expanded to contain the
conversion result.

Fora andA conversions, iFLT_RADIX is a power of 2, the value is correctly rounded
to a hexadecimal floating number with the given precision.

Recommended practice

If FLT_RADIX is not a power of 2, the result should be one of the two adjacent numbers
in hexadecimal floating style with the given precision, with the extra stipulation that the
error should have a correct sign for the current rounding direction.

262) See “future library directions” (7.26.12).

7.24.2.1

Library 7.24.2.1

13

14

15

16

WG14/N843 Committee Draft — August 3, 1998 343

Fore, E, f, F, g, andGconversions, if the number of significant decimal digits is at most
DECIMAL_DIG then the result should be correctly round&d. If the number of
significant decimal digits is more th&ECIMAL_DIG but the source value is exactly
representable withDECIMAL_DIG digits, then the result should be an exact
representation with trailing zeros. Otherwise, the source value is bounded by two
adjacent decimal strinds< U, both havingDECIMAL_DIG significant digits; the value

of the resultant decimal stririgy should satisfy. < D < U, with the extra stipulation that

the error should have a correct sign for the current rounding direction.

Returns

Thefwprintf function returns the number of wide characters transmitted, or a negative
value if an output or encoding error occurred.

Environmental limits

The number of wide characters that can be produced by any single conversion shall be at
least 4095.

EXAMPLE To print a date and time in the form “Sunday, July 3, 10:02” followed~lty five decimal
places:

#include <math.h>
#include <stdio.h>
#include <wchar.h>
*
wchar_t *weekday, *month; // pointers to wide strings
int day, hour, min;
fwprintf(stdout, L"%ls, %ls %d, %.2d:%.2d\n",
weekday, month, day, hour, min);
fwprintf(stdout, L"pi = %.5\n", 4 * atan(1.0));

Forward references: the btowc function (7.24.6.1.1), thembrtowc function
(7.24.6.3.2).

263) For binary-to-decimal conversion, the result format's values are the numbers representable with the
given format specifier. The number of significant digits is determined by the format specifier, and in
the case of fixed-point conversion by the source value as well.

7.24.2.1 Library 7.24.2.1

344 Committee Draft — August 3, 1998 WG14/N843

7.24.2.2 Thdwscanf function
Synopsis

#include <stdio.h>
#include <wchar.h>
int fwscanf(FILE * restrict stream,
const wchar _t * restrict format, ...);

Description

The fwscanf function reads input from the stream pointed todbseam , under

control of the wide string pointed to Hprmat that specifies the admissible input
sequences and how they are to be converted for assignment, using subsequent arguments
as pointers to the objects to receive the converted input. If there are insufficient
arguments for the format, the behavior is undefined. If the format is exhausted while
arguments remain, the excess arguments are evaluated (as always) but are otherwise
ignored.

The format is composed of zero or more directives: one or more white-space wide
characters, an ordinary wide character (neitfoaor a white-space wide character), or a
conversion specification. Each conversion specification is introduced by the wide
charactefb After the% the following appear in sequence:

— An optional assignment-suppressing wide chardcter

— An optional nonzero decimal integer that specifies the maximum field width (in wide
characters).

— An optionallength modifietthat specifies the size of the receiving object.

— A conversion specifiewide character that specifies the type of conversion to be
applied.

Thefwscanf function executes each directive of the format in turn. If a directive fails,

as detailed below, the function returns. Failures are described as input failures (due to the
occurrence of an encoding error or the unavailability of input characters), or matching
failures (due to inappropriate input).

A directive composed of white-space wide character(s) is executed by reading input up to
the first non-white-space wide character (which remains unread), or until no more wide
characters can be read.

A directive that is an ordinary wide character is executed by reading the next wide
character of the stream. If that wide character differs from the directive, the directive
fails and the differing and subsequent wide characters remain unread.

A directive that is a conversion specification defines a set of matching input sequences, as
described below for each specifier. A conversion specification is executed in the
following steps:

7.24.2.1 Library 7.24.2.2

10

11

WG14/N843 Committee Draft — August 3, 1998 345

Input white-space wide characters (as specified bistvepace function) are skipped,
unless the specification includef &, or n specifie?®?

An input item is read from the stream, unless the specification includespaaifier. An

input item is defined as the longest sequence of input wide characters which does not
exceed any specified field width and which is, or is a prefix of, a matching input
sequence. The first wide character, if any, after the input item remains unread. If the
length of the input item is zero, the execution of the directive fails; this condition is a
matching failure unless end-of-file, an encoding error, or a read error prevented input
from the stream, in which case it is an input failure.

Except in the case of%specifier, the input item (or, in the case d¥adirective, the

count of input wide characters) is converted to a type appropriate to the conversion
specifier. If the input item is not a matching sequence, the execution of the directive fails:
this condition is a matching failure. Unless assignment suppression was indicated by a
the result of the conversion is placed in the object pointed to by the first argument
following theformat argument that has not already received a conversion result. If this
object does not have an appropriate type, or if the result of the conversion cannot be
represented in the object, the behavior is undefined.

The length modifiers and their meanings are:

hh Specifies that a following, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointers@ned char orunsigned char

h Specifies that a following, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointer short int or unsigned short
int .

[(ell) Specifies that a following, i , 0, u, X, X, or n conversion specifier applies

to an argument with type pointer tong int or unsigned long

int ; that a followinga, A, e, E, f, F, g, or Gconversion specifier applies to
an argument with type pointer tibuble ; or that a followingc, s, or [
conversion specifier applies to an argument with type pointectar_t .

Il (ell-ell) Specifies that a followind, i , 0, u, X, X, or n conversion specifier applies

to an argument with type pointer tong long int or unsigned
long long int

] Specifies that a following, i , 0, u, X, X, or n conversion specifier applies
to an argument with type pointeritdimax_t or uintmax_t

z Specifies that a following, i , 0, u, x, X, or n conversion specifier applies
to an argument with type pointer §ize t or the corresponding signed
integer type.

t Specifies that a following, i , 0, u, x, X, or n conversion specifier applies
to an argument with type pointer fardiff t or the corresponding

264) These white-space wide characters are not counted against a specified field width.

7.24.2.2 Library 7.24.2.2

12

346

Committee Draft — August 3, 1998 WG14/N843

unsigned integer type.

Specifies that a followin@, A, e, E, f, F, g, or G conversion specifier
applies to an argument with type pointetdog double

If a length modifier appears with any conversion specifier other than as specified above,
the behavior is undefined.

The conversion specifiers and their meanings are:

d

a,efg

7.24.2.2

Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence ofwhestol function with the value 10

for the base argument. The corresponding argument shall be a pointer to
signed integer.

Matches an optionally signed integer, whose format is the same as expected
for the subject sequence of tivestol function with the value O for the
base argument. The corresponding argument shall be a pointer to signed
integer.

Matches an optionally signed octal integer, whose format is the same as
expected for the subject sequence ofwtlestoul function with the value 8

for the base argument. The corresponding argument shall be a pointer to
unsigned integer.

Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence ofwiastoul function with the value 10

for the base argument. The corresponding argument shall be a pointer to
unsigned integer.

Matches an optionally signed hexadecimal integer, whose format is the same
as expected for the subject sequence owitetoul function with the value

16 for thebase argument. The corresponding argument shall be a pointer to
unsigned integer.

Matches an optionally signed floating-point number, infinity, or NaN, whose
format is the same as expected for the subject sequence wvicshed
function. The corresponding argument shall be a pointer to floating.

Matches a sequence of wide characters of exactly the number specified by the
field width (1 if no field width is present in the directive).

If no | length modifier is present, characters from the input field are
converted as if by repeated calls to tivertomb function, with the
conversion state described by arbstate t object initialized to zero
before the first wide character is converted. The corresponding argument
shall be a pointer to the initial element of a character array large enough to
accept the sequence. No null character is added.

If an | length modifier is present, the corresponding argument shall be a
pointer to the initial element of an arraywthar_t large enough to accept
the sequence. No null wide character is added.

Library 7.24.2.2

WG14/N843 Committee Draft — August 3, 1998 347

7.24.2.2

Matches a sequence of non-white-space wide characters.

If no | length modifier is present, characters from the input field are
converted as if by repeated calls to tivertomb function, with the
conversion state described by arbstate t object initialized to zero
before the first wide character is converted. The corresponding argument
shall be a pointer to the initial element of a character array large enough to
accept the sequence and a terminating null character, which will be added
automatically.

If an | length modifier is present, the corresponding argument shall be a
pointer to the initial element of an arraywéhar_t large enough to accept

the sequence and the terminating null wide character, which will be added
automatically.

Matches a nonempty sequence of wide characters from a set of expected
characters (thecansek

If no | length modifier is present, characters from the input field are
converted as if by repeated calls to tivertomb function, with the
conversion state described by arbstate t object initialized to zero
before the first wide character is converted. The corresponding argument
shall be a pointer to the initial element of a character array large enough to
accept the sequence and a terminating null character, which will be added
automatically.

If an | length modifier is present, the corresponding argument shall be a
pointer to the initial element of an arraywthar_t large enough to accept

the sequence and the terminating null wide character, which will be added
automatically.

The conversion specifier includes all subsequent wide characters in the
format string, up to and including the matching right bracket The wide
characters between the brackets @ba&nlis) compose the scanset, unless the
wide character after the left bracket is a circumflex (n which case the
scanset contains all wide characters that do not appear in the scanlist between
the circumflex and the right bracket. If the conversion specifier begins with
[or[7] , the right bracket wide character is in the scanlist and the next
following right bracket wide character is the matching right bracket that ends
the specification; otherwise the first following right bracket wide character is
the one that ends the specification. ¥ wide character is in the scanlist and

is not the first, nor the second where the first wide charactet jis1ar the

last character, the behavior is implementation-defined.

Matches an implementation-defined set of sequences, which should be the
same as the set of sequences that may be produced ¥p tusversion of
thefwprintf function. The corresponding argument shall be a pointer to a
pointer tovoid . The interpretation of the input item is implementation-
defined. If the input item is a value converted earlier during the same

Library 7.24.2.2

13
14

15

16

17

18

19

348 Committee Draft — August 3, 1998 WG14/N843

program execution, the pointer that results shall compare equal to that value;
otherwise the behavior of thépconversion is undefined.

n No input is consumed. The corresponding argument shall be a pointer to
signed integer into which is to be written the number of wide characters read
from the input stream so far by this call to fhwscanf function. Execution
of a %ndirective does not increment the assignment count returned at the
completion of execution of thdwscanf function. No argument is
converted, but one is consumed. If the conversion specification includes an
assignment-suppressing wide character or a field width, the behavior is
undefined.

% Matches a singl&wide character; no conversion or assignment occurs. The
complete conversion specification shallb®o

If a conversion specification is invalid, the behavior is undefiffdd.

The conversion specifie’s, E, F, G and X are also valid and behave the same as,
respectivelya, e, f , g, andx.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any wide characters matching the current directive have been read (other than
leading white space, where permitted), execution of the current directive terminates with
an input failure; otherwise, unless execution of the current directive is terminated with a
matching failure, execution of the following directive (other th@mif any) is terminated

with an input failure.

Trailing white space (including new-line wide characters) is left unread unless matched
by a directive. The success of literal matches and suppressed assignments is not directly
determinable other than via thendirective.

If conversion terminates on a conflicting input wide character, the offending input wide
character is left unread in the input stre&f.

Returns

Thefwscanf function returns the value of the madé®Fif an input failure occurs
before any conversion. Otherwise, the function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early
matching failure.

EXAMPLE 1 The call:

265) See “future library directions” (7.26.12).

266)fwscanf pushes back at most one input wide character onto the input stream. Therefore, some
sequences that are acceptabledstod , westol |, etc., are unacceptableftescanf .

7.24.2.2 Library 7.24.2.2

20

WG14/N843 Committee Draft — August 3, 1998 349

#include <stdio.h>

#include <wchar.h>

roF

int n, i; float x; wchar_t name[50];

n = fwscanf(stdin, L"%d%f%Is", &i, &%, hame);
with the input line:

25 54.32E-1 thompson

will assign ton the value3, to i the value25, to x the value5.432 , and toname the sequence
thompson\0 .

EXAMPLE 2 The call:

#include <stdio.h>

#include <wchar.h>

%

int i; float x; double y;

fwscanf(stdin, L"%2d%f%*d %lf", &i, &x, &y);
with input:

56789 0123 56a72

will assign toi the values6 and tox the value789.0 , will skip past0123, and will assign ty the value
56.0 . The next wide character read from the input stream wil.be

Forward references: thewcstod , westof , andwcstold functions (7.24.4.1.1), the
wcstol , westoll , westoul , andwestoull functions (7.24.4.1.2), thecrtomb
function (7.24.6.3.3).

7.24.2.3 Theswprintf function
Synopsis

#include <wchar.h>
int swprintf(wchar_t * restrict s,
size_tn,
const wchar_t * restrict format, ...);

Description

The swprintf function is equivalent tdwprintf , except that the argumeist
specifies an array of wide characters into which the generated output is to be written,
rather than written to a stream. No more thawide characters are written, including a
terminating null wide character, which is always added (umeassero).

Returns

Theswprintf function returns the number of wide characters written in the array, not
counting the terminating null wide character, or a negative value if an encoding error
occurred or iiln or more wide characters were requested to be written.

71.24.2.2 Library 7.24.2.3

350 Committee Draft — August 3, 1998 WG14/N843

7.24.2.4 Theswscanf function
Synopsis

#include <wchar.h>
int swscanf(const wchar _t * restrict s,
const wchar_t * restrict format, ...);

Description

Theswscanf function is equivalent tbwvscanf , except that the argumesitspecifies a

wide string from which the input is to be obtained, rather than from a stream. Reaching
the end of the wide string is equivalent to encountering end-of-file fofwtheanf
function.

Returns

The swscanf function returns the value of the made®F if an input failure occurs
before any conversion. Otherwise, thescanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.24.2.5 Theviwprintf function
Synopsis

#include <stdarg.h>

#include <stdio.h>

#include <wchar.h>

int viwprintf(FILE * restrict stream,
const wchar _t * restrict format,
va_list arg);

Description

The viwprintf function is equivalent téwprintf , with the variable argument list
replaced byarg , which shall have been initialized by tha start macro (and
possibly subsequenta_arg calls). Thevfwprintf function does not invoke the

va_end macro?®”)

Returns

The viwprintf function returns the number of wide characters transmitted, or a
negative value if an output or encoding error occurred.

EXAMPLE The following shows the use of thdwprintf function in a general error-reporting
routine.

267) As the functionsfwprintf , vswprintf | vfwscanf , vwprintf | vwscanf , andvswscanf
invoke theva_arg macro, the value adrg after the return is indeterminate.

7.24.2.3 Library 7.24.2.5

WG14/N843 Committee Draft — August 3, 1998 351

#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

void error(char *function_name, wchar_t *format, ...)

{

va_list args;

va_start(args, format);

/I print out name of function causing error
fwprintf(stderr, L'ERROR in %s: ", function_name);
/I print out remainder of message
viwprintf(stderr, format, args);

va_end(args);

7.24.2.6 Thevfwscanf function
Synopsis

#include <stdarg.h>

#include <stdio.h>

#include <wchar.h>

int viwscanf(FILE * restrict stream,
const wchar _t * restrict format,
va_list arg);

Description

The viwscanf function is equivalent tdwscanf , with the variable argument list
replaced byarg , which shall have been initialized by tha start macro (and
possibly subsequenta_arg calls). Thevfwscanf function does not invoke the

va_end macro?®”)

Returns

Thevfwscanf function returns the value of the madf®@Fif an input failure occurs
before any conversion. Otherwise, Wfevscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.24.2.5 Library 7.24.2.6

352 Committee Draft — August 3, 1998 WG14/N843

7.24.2.7 Thevswprintf function
Synopsis

#include <stdarg.h>

#include <wchar.h>

int vswprintf(wchar_t * restrict s,
size tn,
const wchar_t * restrict format,
va_list arg);

Description

Thevswprintf function is equivalent tewprintf , with the variable argument list
replaced byarg , which shall have been initialized by tha _start macro (and
possibly subsequenta_arg calls). Thevswprintf function does not invoke the

va_end macro?®”)

Returns

Thevswprintf function returns the number of wide characters written in the array, not
counting the terminating null wide character, or a negative value if an encoding error
occurred or ifn or more wide characters were requested to be generated.

7.24.2.8 Thevswscanf function
Synopsis

#include <stdarg.h>

#include <wchar.h>

int vswscanf(const wchar_t * restrict s,
const wchar _t * restrict format,
va_list arg);

Description

The vswscanf function is equivalent teswscanf , with the variable argument list
replaced byarg , which shall have been initialized by thva start macro (and
possibly subsequenta_arg calls). Thevswscanf function does not invoke the

va_end macro?®”)

Returns

Thevswscanf function returns the value of the mad®Fif an input failure occurs
before any conversion. Otherwise, @vscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.24.2.6 Library 7.24.2.8

WG14/N843 Committee Draft — August 3, 1998 353

7.24.2.9 Thevwprintf function
Synopsis

#include <stdarg.h>

#include <wchar.h>

int vwprintf(const wchar_t * restrict format,
va_list arg);

Description

The vwprintf function is equivalent tavprintf , with the variable argument list
replaced byarg , which shall have been initialized by tha start macro (and
possibly subsequenta_arg calls). Thevwprintf function does not invoke the

va_end macro?®”)

Returns

Thevwprintf function returns the number of wide characters transmitted, or a negative
value if an output or encoding error occurred.

7.24.2.10 Therwscanf function
Synopsis

#include <stdarg.h>

#include <wchar.h>

int vwscanf(const wchar_t * restrict format,
va_list arg);

Description

The vwscanf function is equivalent towscanf , with the variable argument list
replaced byarg , which shall have been initialized by tha start macro (and
possibly subsequenta_arg calls). Thevwscanf function does not invoke the

va_end macro?®”)

Returns

The vwscanf function returns the value of the made®F if an input failure occurs
before any conversion. Otherwise, thscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.24.2.8 Library 7.24.2.10

354 Committee Draft — August 3, 1998 WG14/N843

7.24.2.11 Theawprintf function
Synopsis

#include <wchar.h>
int wprintf(const wchar _t * restrict format, ...);

Description

The wprintf function is equivalent tofwprintf with the argumentstdout
interposed before the argumentsvarintf

Returns

Thewprintf function returns the number of wide characters transmitted, or a negative
value if an output or encoding error occurred.

7.24.2.12 Thewscanf function
Synopsis

#include <wchar.h>
int wscanf(const wchar_t * restrict format, ...);

Description

Thewscanf function is equivalent tdwscanf with the argumenstdin interposed
before the arguments wescanf .

Returns

The wscanf function returns the value of the made®F if an input failure occurs
before any conversion. Otherwise, thwscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.24.3 Wide-character input/output functions

7.24.2.10 Library 7.24.3

WG14/N843 Committee Draft — August 3, 1998 355

7.24.3.1 Thdgetwc function
Synopsis

#include <stdio.h>
#include <wchar.h>
wint_t fgetwc(FILE *stream);

Description

If a next wide character is present from the input stream pointed strdgm , the
fgetwc function obtains that wide character and advances the associated file position
indicator for the stream (if defined).

Returns

Thefgetwc function returns the next wide character from the input stream pointed to by
stream . If the stream is at end-of-file, the end-of-file indicator for the stream is set and
fgetwc returnsWEOFIf a read error occurs, the error indicator for the stream is set and
fgetwc returnsWEOFIf an encoding error occurs (including too few bytes), the value
of the macrcEILSEQ is stored irerrno andfgetwc returnsWEOE®®)

7.24.3.2 Thdgetws function
Synopsis

#include <stdio.h>

#include <wchar.h>

wchar_t *fgetws(wchar_t * restrict s,
int n, FILE * restrict stream);

Description

The fgetws function reads at most one less than the number of wide characters
specified byn from the stream pointed to lsfream into the array pointed to by. No
additional wide characters are read after a new-line wide character (which is retained) or
after end-of-file. A null wide character is written immediately after the last wide
character read into the array.

Returns

The fgetws function returnss if successful. If end-of-file is encountered and no
characters have been read into the array, the contents of the array remain unchanged and a
null pointer is returned. If a read or encoding error occurs during the operation, the array
contents are indeterminate and a null pointer is returned.

268) An end-of-file and a read error can be distinguished by use &dhe andferror functions.
Also, errno will be set toEILSEQ by input/output functions only if an encoding error occurs.

7.24.3 Library 7.24.3.2

356 Committee Draft — August 3, 1998 WG14/N843

7.24.3.3 Thdputwc function
Synopsis

#include <stdio.h>
#include <wchar.h>
wint_t fputwc(wchar_t ¢, FILE *stream);

Description

The fputwc function writes the wide character specified dyto the output stream
pointed to bystream , at the position indicated by the associated file position indicator
for the stream (if defined), and advances the indicator appropriately. If the file cannot
support positioning requests, or if the stream was opened with append mode, the
character is appended to the output stream.

Returns

The fputwc function returns the wide character written. If a write error occurs, the
error indicator for the stream is set aipditwc returnsWEOFIf an encoding error
occurs, the value of the madedLSEQ is stored irerrno andfputwc returnsWEOF

7.24.3.4 Thdputws function
Synopsis

#include <stdio.h>

#include <wchar.h>

int fputws(const wchar_t * restrict s,
FILE * restrict stream);

Description

Thefputws function writes the wide string pointed to byto the stream pointed to by
stream . The terminating null wide character is not written.

Returns

The fputws function returnsEOF if a write or encoding error occurs; otherwise, it
returns a nonnegative value.

7.24.3.2 Library 7.24.3.4

WG14/N843 Committee Draft — August 3, 1998 357

7.24.3.5 Thdwide function
Synopsis

#include <stdio.h>
#include <wchar.h>
int fwide(FILE *stream, int mode);

Description

Thefwide function determines the orientation of the stream pointed wtream . If

mode is greater than zero, the function first attempts to make the stream wide oriented. If
mode is less than zero, the function first attempts to make the stream byte offéhted.
Otherwisemode s zero and the function does not alter the orientation of the stream.

Returns

Thefwide function returns a value greater than zero if, after the call, the stream has
wide orientation, a value less than zero if the stream has byte orientation, or zero if the
stream has no orientation.

7.24.3.6 Thegetwc function
Synopsis

#include <stdio.h>
#include <wchar.h>
wint_t getwc(FILE *stream);

Description

The getwc function is equivalent tdgetwc , except that if it is implemented as a
macro, it may evaluatstream more than once, so the argument should never be an
expression with side effects.

Returns

Thegetwc function returns the next wide character from the input stream pointed to by
stream , or WEOF

269) If the orientation of the stream has already been deterrfividd, does not change it.

7.24.3.4 Library 7.24.3.6

358 Committee Draft — August 3, 1998 WG14/N843

7.24.3.7 Theggetwchar function
Synopsis

#include <wchar.h>
wint_t getwchar(void);

Description
Thegetwchar function is equivalent tgetwc with the argumenstdin
Returns

Thegetwchar function returns the next wide character from the input stream pointed to
by stdin , or WEOF

7.24.3.8 Theputwc function
Synopsis

#include <stdio.h>
#include <wchar.h>
wint_t putwc(wchar_t ¢, FILE *stream);

Description

The putwc function is equivalent tdputwc , except that if it is implemented as a
macro, it may evaluatstream more than once, so that argument should never be an
expression with side effects.

Returns

Theputwc function returns the wide character written\EOF
7.24.3.9 Theoutwchar function

Synopsis

#include <wchar.h>
wint_t putwchar(wchar _t c);

Description

Theputwchar function is equivalent tputwc with the second argumesidout
Returns

Theputwchar function returns the character written WEOF

7.24.3.6 Library 7.24.3.9

WG14/N843 Committee Draft — August 3, 1998 359

7.24.3.10 Thaungetwc function
Synopsis

#include <stdio.h>
#include <wchar.h>
wint_t ungetwc(wint_t ¢, FILE *stream);

Description

The ungetwc function pushes the wide character specifiedccbyack onto the input
stream pointed to bystream . Pushed-back wide characters will be returned by
subsequent reads on that stream in the reverse order of their pushing. A successful
intervening call (with the stream pointed to slyeam) to a file positioning function

(fseek , fsetpos , or rewind) discards any pushed-back wide characters for the
stream. The external storage corresponding to the stream is unchanged.

One wide character of pushback is guaranteed, even if the calldadgbevc function
follows just after a call to a formatted wide character input funcfimscanf |,
vfwscanf , vwscanf , orwscanf . If the ungetwc function is called too many times

on the same stream without an intervening read or file positioning operation on that
stream, the operation may fail.

If the value ot equals that of the macWWEOFthe operation fails and the input stream is
unchanged.

A successful call to thengetwc function clears the end-of-file indicator for the stream.

The value of the file position indicator for the stream after reading or discarding all
pushed-back wide characters is the same as it was before the wide characters were pushed
back. For a text or binary stream, the value of its file position indicator after a successful
call to theungetwc function is unspecified until all pushed-back wide characters are
read or discarded.

Returns

Theungetwc function returns the wide character pushed backyBOHRf the operation
fails.

7.24.4 General wide-string utilities

The header<wchar.h> declares a number of functions useful for wide-string
manipulation. Various methods are used for determining the lengths of the arrays, but in
all cases avchar_t * argument points to the initial (lowest addressed) element of the
array. If an array is accessed beyond the end of an object, the behavior is undefined.

7.24.4.1 Wide-string numeric conversion functions
7.24.4.1.1 Thewcstod , wecstof , andwcstold functions
Synopsis

7.24.3.9 Library 7.244.1.1

360 Committee Draft — August 3, 1998 WG14/N843

#include <wchar.h>

double wcstod(const wchar_t * restrict nptr,
wchar_t ** restrict endptr);

float wcstof(const wchar _t * restrict nptr,
wchar_t ** restrict endptr);

long double wcstold(const wchar _t * restrict nptr,
wchar_t ** restrict endptr);

Description

Thewcstod , wcstof , andwcstold functions convert the initial portion of the wide
string pointed to bynptr to double , float , andlong double representation,
respectively. First, they decompose the input string into three parts: an initial, possibly
empty, sequence of white-space wide characters (as specified bigwibgace
function), a subject sequence resembling a floating-point constant or representing an
infinity or NaN; and a final wide string of one or more unrecognized wide characters,
including the terminating null wide character of the input wide string. Then, they attempt
to convert the subject sequence to a floating-point number, and return the result.

The expected form of the subject sequence is an optional plus or minus sign, then one of
the following:

— a nonempty sequence of decimal digits optionally containing a decimal-point wide
character, then an optional exponent part as defined for the corresponding single-byte
characters in 6.4.4.2;

— a0x or 0X, then a nonempty sequence of hexadecimal digits optionally containing a
decimal-point wide character, then an optional binary-exponent part as defined in
6.4.4.2, where either the decimal-point wide character or the binary-exponent part is
present;

— one ofINF or INFINITY , or any other wide string equivalent except for case

— one of NAN or NAN(n-wchar-sequen%%t), or any other wide string equivalent
except for case in tHe¢ANpart, where:

n-wchar-sequence:
digit
nondigit
n-wchar-sequence digit
n-wchar-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input wide
string, starting with the first non-white-space wide character, that is of the expected form.

The subject sequence contains no wide characters if the input wide string is not of the
expected form.

If the subject sequence has the expected form for a floating-point number, the sequence of
wide characters starting with the first digit or the decimal-point wide character
(whichever occurs first) is interpreted as a floating constant according to the rules of
6.4.4.2, except that the decimal-point wide character is used in place of a period, and that

724411 Library 7.244.1.1

10

WG14/N843 Committee Draft — August 3, 1998 361

if neither an exponent part, a binary-exponent part, nor a decimal-point wide character
appears, a decimal point is assumed to follow the last digit in the wide string. A wide
character sequent¢®F or INFINITY is interpreted as an infinity, if representable in the
return type, else like a floating constant that is too large for the range of the return type.
A wide character sequen®ANor NAN(n-wchar-sequen%egt) Is interpreted as a quiet

NaN, if supported in the return type, else like a subject Sequence part that does not have
the expected form; the meaning of the n-wchar sequences is implementationZ&ined.

If the subject sequence begins with a minus sign, the value resulting from the conversion
is negated’") A pointer to the final wide string is stored in the object pointed to by
endptr , provided thaendptr is not a null pointer.

If the subject sequence has the hexadecimal fornFeMdRADIX is a power of 2, then
the value resulting from the conversion is correctly rounded.

In other than théC" locale, additional locale-specific subject sequence forms may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value aiptr is stored in the object pointed to byndptr , provided
thatendptr is not a null pointer.

Recommended practice

If the subject sequence has the hexadecimal forrFRMdRADIX is not a power of 2,

then the result should be one of the two numbers in the appropriate internal format that
are adjacent to the hexadecimal floating source value, with the extra stipulation that the
error should have a correct sign for the current rounding direction.

If the subject sequence has the decimal form and at DE&StMAL_DIG (defined in
<float.h>) significant digits, then the value resulting from the conversion should be
correctly rounded. If the subject sequergehas the decimal form and more than
DECIMAL_DIG significant digits, consider the two bounding, adjacent decimal sttings
andU, both havingDECIMAL_DIGsignificant digits, such that the valued.oD, andU
satisfyL < D < U. The result of conversion should be one of the (equal or adjacent)
values that would be obtained by correctly roundingnd U according to the current
rounding direction, with the extra stipulation that the error with respd2tstoould have

a correct sign for the current rounding directiéh.

Returns

The functions return the converted value, if any. If no conversion could be performed,
zero is returned. If the correct value is outside the range of representable values, plus or
minus HUGE_VALHUGE_VALFor HUGE_VALLis returned (according to the return

270) An implementation may use the n-wchar sequence to determine extra information to be represented in
the NaN's significand.

271) The functions honor the sign of zero if floating-point arithmetic supports signed zeros.

272) DECIMAL_DIG, defined in<float.h> , should be sufficiently large thatandU will usually round
to the same internal floating value, but if not will round to adjacent values.

724411 Library 7.2441.1

362 Committee Draft — August 3, 1998 WG14/N843

type and sign of the value), and the value of the mB&ANGEs stored inerrno . If

the result underflows (7.12.1), the functions return a value whose magnitude is no greater
than the smallest normalized positive number in the return type; wiegther acquires

the valueERANGEs implementation-defined.

7.24.4.1.2 Thewvcstol ,wcestoll |, wcestoul , andwcstoull functions
Synopsis

#include <wchar.h>

long int wcstol(
const wchar_t * restrict nptr,
wchar_t ** restrict endptr,
int base);

long long int wcestoll(
const wchar _t * restrict nptr,
wchar_t ** restrict endptr,
int base);

unsigned long int wcstoul(
const wchar_t * restrict nptr,
wchar_t ** restrict endptr,
int base);

unsigned long long int wcstoull(
const wchar_t * restrict nptr,
wchar_t ** restrict endptr,

int base);
Description
The wcstol , westoll , westoul , and wcstoull functions convert the initial
portion of the wide string pointed to bytr to long int , long long int ,
unsigned long int , and unsigned long long int representation,

respectively. First, they decompose the input string into three parts: an initial, possibly
empty, sequence of white-space wide characters (as specified bigwibgace

function), a subject sequence resembling an integer represented in some radix determined
by the value ofbase, and a final wide string of one or more unrecognized wide
characters, including the terminating null wide character of the input wide string. Then,
they attempt to convert the subject sequence to an integer, and return the result.

If the value ofbase is zero, the expected form of the subject sequence is that of an
integer constant as described for the corresponding single-byte characters in 6.4.4.1,
optionally preceded by a plus or minus sign, but not including an integer suffix. If the
value ofbase is between 2 and 36 (inclusive), the expected form of the subject sequence
is a sequence of letters and digits representing an integer with the radix specified by
base , optionally preceded by a plus or minus sign, but not including an integer suffix.
The letters froma (or A) throughz (or Z) are ascribed the values 10 through 35; only
letters and digits whose ascribed values are less than thasefare permitted. If the

value ofbase is 16, the wide characte@x or OX may optionally precede the sequence

724411 Library 7.24.41.2

WG14/N843 Committee Draft — August 3, 1998 363

of letters and digits, following the sign if present.

The subject sequence is defined as the longest initial subsequence of the input wide
string, starting with the first non-white-space wide character, that is of the expected form.

The subject sequence contains no wide characters if the input wide string is empty or
consists entirely of white space, or if the first non-white-space wide character is other

than a sign or a permissible letter or digit.

If the subject sequence has the expected form and the vddaseois zero, the sequence

of wide characters starting with the first digit is interpreted as an integer constant
according to the rules of 6.4.4.1. If the subject sequence has the expected form and the
value ofbase is between 2 and 36, it is used as the base for conversion, ascribing to each
letter its value as given above. If the subject sequence begins with a minus sign, the value
resulting from the conversion is negated (in the return type). A pointer to the final wide
string is stored in the object pointed todaydptr , provided thaendptr is not a null

pointer.

In other than théC" locale, additional locale-specific subject sequence forms may be
accepted.

If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value aiptr is stored in the object pointed to byndptr , provided
thatendptr is not a null pointer.

Returns

The westol |, westoll |, westoul , andwcestoull functions return the converted
value, if any. If no conversion could be performed, zero is returned. If the correct value
is outside the range of representable vall€3NG MIN LONG_MAXLLONG_MIN
LLONG_MAXULONG_MAXor ULLONG_MAJXs returned (according to the return type
sign of the value, if any), and the value of the m&iRANGHS stored irerrno .

7.24.4.2 Wide-string copying functions
7.24.4.2.1 Thavcscpy function
Synopsis

#include <wchar.h>
wchar_t *wcscpy(wchar _t * restrict s1,
const wchar_t * restrict s2);

Description

Thewcscpy function copies the wide string pointed to$® (including the terminating
null wide character) into the array pointed tosdy.

Returns

Thewcscpy function returns the value efl.

7.24.4.1.2 Library 7.24.4.2.1

364 Committee Draft — August 3, 1998 WG14/N843

7.24.4.2.2 Thavcsncpy function
Synopsis

#include <wchar.h>

wchar_t *wcsncpy(wchar _t * restrict s1,
const wchar _t * restrict s2,
size_tn);

Description

Thewcsncpy function copies not more thanwide characters (those that follow a null

wide c)haracter are not copied) from the array pointed &R2bio the array pointed to by
s1 273

If the array pointed to bg2 is a wide string that is shorter tharwide characters, null
wide characters are appended to the copy in the array pointed db, hyntil n wide
characters in all have been written.

Returns

Thewcsncpy function returns the value sfl.
7.24.4.3 Wide-string concatenation functions
7.24.4.3.1 Thevcscat function

Synopsis

#include <wchar.h>
wchar_t *wcscat(wchar_t * restrict s1,
const wchar_t * restrict s2);

Description

Thewcscat function appends a copy of the wide string pointed tgdyincluding the
terminating null wide character) to the end of the wide string pointed $& byhe initial
wide character a2 overwrites the null wide character at the endXof

Returns

Thewcscat function returns the value efL.

273) Thus, if there is no null wide character in the firstide characters of the array pointed tosy, the
result will not be null-terminated.

724421 Library 7.244.3.1

WG14/N843 Committee Draft — August 3, 1998 365

7.24.4.3.2 Thavcsncat function
Synopsis

#include <wchar.h>

wchar_t *wcsncat(wchar_t * restrict s1,
const wchar _t * restrict s2,
size_tn);

Description

Thewcsncat function appends not more tharwide characters (a null wide character
and those that follow it are not appended) from the array pointed $@ by the end of
the wide string pointed to byl. The initial wide character a2 overwrites the null
wide character at the endsff A terminating null wide character is always appended to
the resulg’®

Returns
Thewcsncat function returns the value efl.
7.24.4.4 Wide-string comparison functions

Unless explicitly stated otherwise, the functions described in this subclause order two
wide characters the same way as two integers of the underlying integer type designated
bywchar_t .

7.24.4.4.1 Thavcscmp function
Synopsis

#include <wchar.h>
int wescmp(const wchar_t *s1, const wchar_t *s2);

Description

The wcsecmp function compares the wide string pointed to diy to the wide string
pointed to bys2.

Returns

The wecscmp function returns an integer greater than, equal to, or less than zero,
accordingly as the wide string pointed toddy is greater than, equal to, or less than the
wide string pointed to bg2.

274) Thus, the maximum number of wide characters that can end up in the array pointesiltasby
wcslen(sl)+n+1

724431 Library 724441

366 Committee Draft — August 3, 1998 WG14/N843

7.24.4.4.2 Thavcscoll function
Synopsis

#include <wchar.h>
int wescoll(const wchar_t *s1, const wchar _t *s2);

Description

Thewcscoll function compares the wide string pointed toddy to the wide string
pointed to bys2, both interpreted as appropriate to tif@ COLLATEcategory of the
current locale.

Returns

The wcscoll function returns an integer greater than, equal to, or less than zero,
accordingly as the wide string pointed toddy is greater than, equal to, or less than the
wide string pointed to byg2 when both are interpreted as appropriate to the current
locale.

7.24.4.4.3 Thevcsncmp function
Synopsis

#include <wchar.h>
int wesncmp(const wchar_t *s1, const wchar_t *s2,
size_tn);

Description

Thewcsncmp function compares not more thanwide characters (those that follow a
null wide character are not compared) from the array pointed telbto the array
pointed to bys2.

Returns

The wesnemp function returns an integer greater than, equal to, or less than zero,
accordingly as the possibly null-terminated array pointed telbys greater than, equal
to, or less than the possibly null-terminated array pointed &2 by

724441 Library 7.24.4.4.3

WG14/N843 Committee Draft — August 3, 1998 367

7.24.4.4.4 Thavcsxfrm function
Synopsis

#include <wchar.h>

size_t wesxfrm(wchar _t * restrict s1,
const wchar _t * restrict s2,
size_tn);

Description

The wesxfrm function transforms the wide string pointed to &% and places the
resulting wide string into the array pointed toddy. The transformation is such that if
thewcscmp function is applied to two transformed wide strings, it returns a value greater
than, equal to, or less than zero, corresponding to the result aicdm®ll function
applied to the same two original wide strings. No more thaside characters are placed
into the resulting array pointed to b¥, including the terminating null wide character. If
nis zerosl is permitted to be a null pointer.

Returns

Thewcsxfrm function returns the length of the transformed wide string (not including
the terminating null wide character). If the value returnad as greater, the contents of
the array pointed to byl are indeterminate.

EXAMPLE The value of the following expression is the length of the array needed to hold the
transformation of the wide string pointed tosay

1 + wesxfrm(NULL, s, 0)

7.24.4.5 Wide-string search functions
7.24.4.5.1 Thavcschr function
Synopsis

#include <wchar.h>
wchar_t *wcschr(const wchar_t *s, wchar_t ¢);

Description

Thewcschr function locates the first occurrencecoin the wide string pointed to k).
The terminating null wide character is considered to be part of the wide string.

Returns

Thewcschr function returns a pointer to the located wide character, or a null pointer if
the wide character does not occur in the wide string.

71.24.4.4.3 Library 7.24.45.1

368 Committee Draft — August 3, 1998 WG14/N843

7.24.4.5.2 Thavcscspn function
Synopsis

#include <wchar.h>
size_t wcscspn(const wechar_t *s1, const wchar _t *s2);

Description

Thewcscspn function computes the length of the maximum initial segment of the wide
string pointed to bysl which consists entirely of wide characterst from the wide
string pointed to bg2.

Returns

Thewcscspn function returns the length of the segment.
7.24.4.5.3 Thavcslen function

Synopsis

#include <wchar.h>
size_t wcslen(const wchar_t *s);

Description
Thewcslen function computes the length of the wide string pointed te.by
Returns

Thewcslen function returns the number of wide characters that precede the terminating
null wide character.

7.24.4.5.4 Thavcspbrk function
Synopsis

#include <wchar.h>
wchar_t *wcspbrk(const wchar_t *s1, const wchar_t *s2);

Description

Thewcspbrk function locates the first occurrence in the wide string pointed $4. lof
any wide character from the wide string pointed teby

Returns

Thewcspbrk function returns a pointer to the wide characteslin or a null pointer if
no wide character frors2 occurs insl.

7.24.45.1 Library 7.24.45.4

WG14/N843 Committee Draft — August 3, 1998 369

7.24.45.5 Thavcsrchr function
Synopsis

#include <wchar.h>
wchar_t *wcsrchr(const wchar_t *s, wchar_t ¢);

Description

Thewcsrchr function locates the last occurrencecoin the wide string pointed to by
s. The terminating null wide character is considered to be part of the wide string.

Returns

Thewcsrchr function returns a pointer to the wide character, or a null pointeddes
not occur in the wide string.

7.24.4.5.6 Theavcsspn function
Synopsis

#include <wchar.h>
size_t wcsspn(const wchar_t *s1, const wchar_t *s2);

Description

Thewcsspn function computes the length of the maximum initial segment of the wide
string pointed to byl which consists entirely of wide characters from the wide string
pointed to bys2.

Returns

Thewcsspn function returns the length of the segment.
7.24.4.5.7 Thavcsstr function

Synopsis

#include <wchar.h>
wchar_t *wcsstr(const wchar_t *s1, const wchar_t *s2);

Description

Thewcsstr function locates the first occurrence in the wide string pointed &1 byf
the sequence of wide characters (excluding the terminating null wide character) in the
wide string pointed to bg2.

Returns

Thewcsstr function returns a pointer to the located wide string, or a null pointer if the
wide string is not found. I62 points to a wide string with zero length, the function
returnssl.

7.24.45.4 Library 7.24.45.7

370 Committee Draft — August 3, 1998 WG14/N843

7.24.45.8 Thavcstok function
Synopsis

#include <wchar.h>

wchar_t *wcstok(wchar_t * restrict s1,
const wchar _t * restrict s2,
wchar_t ** restrict ptr);

Description

A sequence of calls to tlvecstok function breaks the wide string pointed toddy into

a sequence of tokens, each of which is delimited by a wide character from the wide string
pointed to bys2. The third argument points to a caller-providechar_t pointer into

which thewcstok function stores information necessary for it to continue scanning the
same wide string.

The first call in a sequence has a non-null first argument and stores an initial value in the
object pointed to bptr . Subsequent calls in the sequence have a null first argument and
the object pointed to bptr is required to have the value stored by the previous call in
the sequence, which is then updated. The separator wide string pointesltoriay be
different from call to call.

The first call in the sequence searches the wide string pointedsfo foy the first wide
character that isot contained in the current separator wide string pointed &2byf no
such wide character is found, then there are no tokens in the wide string pointexd to by
and thewcstok function returns a null pointer. If such a wide character is found, it is
the start of the first token.

Thewcstok function then searches from there for a wide characteiglcantained in

the current separator wide string. If no such wide character is found, the current token
extends to the end of the wide string pointed tasby and subsequent searches in the
same wide string for a token return a null pointer. If such a wide character is found, it is
overwritten by a null wide character, which terminates the current token.

In all cases, thevcstok function stores sufficient information in the pointer pointed to
by ptr so that subsequent calls, with a null pointerdbrand the unmodified pointer
value for ptr , shall start searching just past the element overwritten by a null wide
character (if any).

Returns

Thewcstok function returns a pointer to the first wide character of a token, or a null
pointer if there is no token.

EXAMPLE

7.24.45.7 Library 7.24.45.8

WG14/N843 Committee Draft — August 3, 1998 371

#include <wchar.h>

static wchar_t strl[] = L"?a??7?b,,,#c";
static wchar_t str2[] = L"\t \t";
wchar_t *t, *ptrl, *ptr2;

It points to the tokerL"a"
t = westok(strl, L"?", &ptrl);

It points to the tokerL"??b"
t = westok(NULL, L",", &ptrl);

It is a null pointer
t = westok(str2, L" \t", &ptr2);

It points to the tokerL"c"
t = westok(NULL, L"#,", &ptrl);

It is a null pointer
t = westok(NULL, L"?", &ptrl);

7.24.4.6 Wide-character array functions

These functions operate on arrays of tygbar _t whose size is specified by a separate
count argument. These functions are not affected by locale, andredl_t values are
treated identically. The null wide character amchar_t values not corresponding to
valid multibyte characters are not treated specially.

Unless explicitly stated otherwise, the functions described in this subclause order two
wide characters the same way as two integers of the underlying integer type designated
bywchar_t .

Where an argument declared sage_tn determines the length of the array for a
function, n can have the value zero on a call to that function. Unless stated explicitly
otherwise in the description of a particular function in this subclause, pointer arguments
on such a call shall still have valid values, as described in 7.1.4. On such a call, a
function that locates a wide character finds no occurrence, a function that compares two
wide character sequences returns zero, and a function that copies wide characters copies
zero wide characters.

7.24.45.8 Library 7.24.4.6

372 Committee Draft — August 3, 1998 WG14/N843

7.24.4.6.1 Thavmemchrfunction
Synopsis

#include <wchar.h>
wchar_t *wmemchr(const wchar_t *s, wchar_t c,
size_t n);

Description

Thewmemchr function locates the first occurrencecoih the initialn wide characters of
the object pointed to by.

Returns

Thewmemchrfunction returns a pointer to the located wide character, or a null pointer if
the wide character does not occur in the object.

7.24.4.6.2 Thavmemcmpunction
Synopsis

#include <wchar.h>
int wmemcmp(const wchar_t * s1, const wchar_t * s2,
size_t n);

Description

Thewmemcmpunction compares the first wide characters of the object pointed to by
sl to the firstn wide characters of the object pointed tosiy

Returns

The wmemcmpfunction returns an integer greater than, equal to, or less than zero,
accordingly as the object pointed todly is greater than, equal to, or less than the object
pointed to bys2.

7.24.4.6.3 Thavmemcpyfunction
Synopsis

#include <wchar.h>

wchar_t *wmemcpy(wchar_t * restrict s1,
const wchar _t * restrict s2,
size_tn);

Description

Thewmemcpyfunction copiesi wide characters from the object pointed tosRyto the
object pointed to bgl.

Returns
Thewmemcpyfunction returns the value sfl..

7.24.4.6 Library 7.24.4.6.3

WG14/N843 Committee Draft — August 3, 1998 373

7.24.4.6.4 Thavmemmovdunction
Synopsis

#include <wchar.h>
wchar_t *wmemmove(wchar_t *s1, const wchar_t *s2,
size_t n);

Description

Thewmemmovdunction copiesn wide characters from the object pointed tod2yto
the object pointed to bgl. Copying takes place as if tlrewide characters from the
object pointed to bg2 are first copied into a temporary arraynofvide characters that
does not overlap the objects pointed toslhiyor s2, and then th@ wide characters from
the temporary array are copied into the object pointed &1 by

Returns

Thewmemmovédunction returns the value sf..
7.24.4.6.5 Thavmemset function
Synopsis

#include <wchar.h>
wchar_t *wmemset(wchar_t *s, wchar_t c, size_t n);

Description

Thewmemset function copies the value af into each of the firsh wide characters of
the object pointed to by.

Returns

Thewmemset function returns the value sf

7.24.5 Wide-character time conversion functions

7.24.4.6.3 Library 7.24.5

374 Committee Draft — August 3, 1998 WG14/N843

7.24.5.1 Thewcsftime function
Synopsis

#include <time.h>

#include <wchar.h>

size_t wcsftime(wchar_t * restrict s,
size_t maxsize,
const wchar_t * restrict format,
const struct tm * restrict timeptr);

Description
Thewcsftime function is equivalent to th&rftime function, except that:

— The argumens points to the initial element of an array of wide characters into which
the generated output is to be placed.

— The argumentnaxsize indicates the limiting number of wide characters.

— The argumentormat is a wide string and the conversion specifiers are replaced by
corresponding sequences of wide characters.

— The return value indicates the number of wide characters.
Returns

If the total number of resulting wide characters including the terminating null wide
character is not more thanaxsize , the wcsftime function returns the number of
wide characters placed into the array pointed t® mpt including the terminating null

wide character. Otherwise, zero is returned and the contents of the array are
indeterminate.

7.24.5.2 Thewcsfxtime function
Synopsis

#include <time.h>

#include <wchar.h>

size_t wcsfxtime(wchar_t * restrict s,
size_t maxsize,
const wchar _t * restrict format,
const struct tmx * restrict timeptr);

Description

The wcsfxtime function is equivalent to thevcsftime function, except that the
timeptr parameter has a different type, and #e and %Z conversion specifiers
depend on both then_zone andtm_isdst members.

7.24.5 Library 7.24.5.2

WG14/N843 Committee Draft — August 3, 1998 375

7.24.6 Extended multibyte and wide-character conversion utilities

The headexkwchar.h> declares an extended set of functions useful for conversion
between multibyte characters and wide characters.

Most of the following functions — those that are listed as “restartable”, 7.24.6.3 and
7.24.6.4 — take as a last argument a pointer to an object ofrtigpete t that is used

to describe the curregbnversion statérom a particular multibyte character sequence to

a wide-character sequence (or the reverse) under the rules of a particular setting for the
LC_CTYPEcategory of the current locale.

The initial conversion state corresponds, for a conversion in either direction, to the
beginning of a new multibyte character in the initial shift state. A zero-valued
mbstate_t object is (at least) one way to describe an initial conversion state. A zero-
valued mbstate_t object can be used to initiate conversion involving any multibyte
character sequence, in ab@ CTYPEcategory setting. If ambstate t object has

been altered by any of the functions described in this subclause, and is then used with a
different multibyte character sequence, or in the other conversion direction, or with a
different LC_CTYPE category setting than on earlier function calls, the behavior is
undefinec?’®

On entry, each function takes the described conversion state (either internal or pointed to
by an argument) as current. The conversion state described by the pointed-to object is
altered as needed to track the shift state, and the position within a multibyte character, for
the associated multibyte character sequence.

7.24.6.1 Single-byte wide-character conversion functions
7.24.6.1.1 Thédtowc function
Synopsis

#include <stdio.h>
#include <wchar.h>
wint_t btowc(int c);

Description

The btowc function determines whethar constitutes a valid (one-byte) multibyte
character in the initial shift state.

Returns

Thebtowc returnsWEOFRf ¢ has the valu&OFor if (unsigned char)c does not
constitute a valid (one-byte) multibyte character in the initial shift state. Otherwise, it
returns the wide-character representation of that character.

275) Thus a particulambstate t object can be used, for example, with both thertowc and
mbsrtowcs functions as long as they are used to step sequentially through the same multibyte
character string.

7.24.6 Library 7.246.1.1

376 Committee Draft — August 3, 1998 WG14/N843

7.24.6.1.2 Theaevctob function
Synopsis

#include <stdio.h>
#include <wchar.h>
int wctob(wint_t c);

Description

Thewctob function determines whether corresponds to a member of the extended
character set whose multibyte character representation is a single byte when in the initial
shift state.

Returns

Thewctob returnsEOFif ¢ does not correspond to a multibyte character with length
one in the initial shift state. Otherwise, it returns the single-byte representation of that
character as amsigned char ~ converted to amt

7.24.6.2 Thambsinit function
Synopsis

#include <wchar.h>
int mbsinit(const mbstate_t *ps);

Description

If ps is not a null pointer, thenbsinit function determines whether the pointed-to
mbstate_t object describes an initial conversion state.

Returns

Thembsinit function returns nonzero gs is a null pointer or if the pointed-to object
describes an initial conversion state; otherwise, it returns zero.

7.24.6.3 Restartable multibyte/wide-character conversion functions

These functions differ from the corresponding multibyte character functions of 7.20.7
(mblen , mbtowc, and wctomb) in that they have an extra parametes, of type
pointer tombstate t that points to an object that can completely describe the current
conversion state of the associated multibyte character sequer=.islfa null pointer,

each function uses its own intermabstate t object instead, which is initialized at
program startup to the initial conversion state. The implementation behaves as if no
library function calls these functions with a null pointerger.

Also unlike their corresponding functions, the return value does not represent whether the
encoding is state-dependent.

7.246.1.1 Library 7.24.6.3

WG14/N843 Committee Draft — August 3, 1998 377

7.24.6.3.1 Thenbrlen function
Synopsis

#include <wchar.h>

size_t mbrlen(const char * restrict s,
size tn,
mbstate_t * restrict ps);

Description
Thembrlen function is equivalent to the call:
mbrtowc(NULL, s, n, ps != NULL ? ps : &internal)

whereinternal is thembstate_t object for thembrlen function, except that the
expression designated pyg is evaluated only once.

Returns

Thembrlen function returns a value between zero andnhclusive,(size_t)-2 , or
(size_t)-1

Forward references: thembrtowc function (7.24.6.3.2).
7.24.6.3.2 Thembrtowc function
Synopsis

#include <wchar.h>

size_t mbrtowc(wchar_t * restrict pwc,
const char * restrict s,
size tn,
mbstate_t * restrict ps);

Description

If s is a null pointer, thenbrtowc function is equivalent to the call:
mbrtowc(NULL, "™, 1, ps)

In this case, the values of the paramepers andn are ignored.

If s is not a null pointer, thenbrtowc function inspects at most bytes beginning with

the byte pointed to by to determine the number of bytes needed to complete the next
multibyte character (including any shift sequences). If the function determines that the
next multibyte character is completed, it determines the value of the corresponding wide
character and then, fwc is not a null pointer, stores that value in the object pointed to
by pwec. If the corresponding wide character is the null wide character, the resulting state
described is the initial conversion state.

Returns

The mbrtowc function returns the first of the following that applies (given the current
conversion state):

7.24.6.3 Library 7.24.6.3.2

378 Committee Draft — August 3, 1998 WG14/N843

0 if the nextn or fewer bytes complete the multibyte character that
corresponds to the null wide character (which is the value stored).

positive if the nextn or fewer bytes complete a valid multibyte character (which
is the value stored); the value returned is the number of bytes that
complete the multibyte character.

(size_t)-2 if the nextn bytes contribute to an incomplete (but potentially valid)
multibyte character, and ali bytes have been processed (no value is
stored)?’®)

(size_t)-1 if an encoding error occurs, in which case the mest fewer bytes do

not contribute to a complete and valid multibyte character (no value is
stored); the value of the macEILSEQ is stored inerrno , and the
conversion state is undefined.

7.24.6.3.3 Thavcrtomb function
Synopsis

#include <wchar.h>

size_t wcrtomb(char * restrict s,
wchar_t wc,
mbstate_t * restrict ps);

Description

If s is a null pointer, thevcrtomb function is equivalent to the call
wcertomb(buf, L'\O’, ps)

wherebuf is an internal buffer.

If s is not a null pointer, thevcrtomb function determines the number of bytes needed

to represent the multibyte character that corresponds to the wide character given by
(including any shift sequences), and stores the resulting bytes in the array whose first
element is pointed to by. At mostMB_CUR_MAMNytes are stored. ikc is a null wide
character, a null byte is stored, preceded by any shift sequence needed to restore the
initial shift state; the resulting state described is the initial conversion state.

Returns

Thewcrtomb function returns the number of bytes stored in the array object (including
any shift sequences). Whevc is not a valid wide character, an encoding error occurs:
the function stores the value of the ma€thSEQ in errno and returngsize_t)-1 ;

the conversion state is undefined.

276) Whenn has at least the value of tMB_CUR_MAKacro, this case can only occussifpoints at a
sequence of redundant shift sequences (for implementations with state-dependent encodings).

7.24.6.3.2 Library 7.24.6.3.3

WG14/N843 Committee Draft — August 3, 1998 379

7.24.6.4 Restartable multibyte/wide-string conversion functions

These functions differ from the corresponding multibyte string functions of 7.20.8
(mbstowcs andwcstombs) in that they have an extra paramepey, of type pointer to
mbstate t that points to an object that can completely describe the current conversion
state of the associated multibyte character sequengs. isfa null pointer, each function
uses its own internahbstate t object instead, which is initialized at program startup

to the initial conversion state. The implementation behaves as if no library function calls
these functions with a null pointer fps.

Also unlike their corresponding functions, the conversion source parasreterhas a
pointer-to-pointer type. When the function is storing the results of conversions (that is,
whendst is not a null pointer), the pointer object pointed to by this parameter is updated
to reflect the amount of the source processed by that invocation.

7.24.6.4.1 Thanbsrtowcs function
Synopsis

#include <wchar.h>

size_t mbsrtowcs(wchar_t * restrict dst,
const char ** restrict src,
size tlen,
mbstate_t * restrict ps);

Description

Thembsrtowcs function converts a sequence of multibyte characters, beginning in the
conversion state described by the object pointed t@dyyfrom the array indirectly
pointed to bysrc into a sequence of corresponding wide characterdstIfis not a null

pointer, the converted characters are stored into the array pointedisd b onversion
continues up to and including a terminating null character, which is also stored.
Conversion stops earlier in two cases: when a sequence of bytes is encountered that does
not form a valid multibyte character, or @t is not a null pointer) wheten codes

have been stored into the array pointed tai$ly.?’") Each conversion takes place as if

by a call to thembrtowc function.

If dst is not a null pointer, the pointer object pointed tosby is assigned either a null
pointer (if conversion stopped due to reaching a terminating null character) or the address
just past the last multibyte character converted (if any). If conversion stopped due to
reaching a terminating null character andst is not a null pointer, the resulting state
described is the initial conversion state.

Returns

If the input conversion encounters a sequence of bytes that do not form a valid multibyte
character, an encoding error occurs: thesrtowcs function stores the value of the
macroEILSEQ in errno and returngsize_t)-1 ; the conversion state is undefined.

277) Thus, the value &&n is ignored ifdst is a null pointer.

7.24.6.4 Library 7.246.4.1

380 Committee Draft — August 3, 1998 WG14/N843

Otherwise, it returns the number of multibyte characters successfully converted, not
including the terminating null (if any).

7.24.6.4.2 Thevcsrtombs function
Synopsis

#include <wchar.h>

size_t wcsrtombs(char * restrict dst,
const wchar_t ** restrict src,
size tlen,
mbstate_t * restrict ps);

Description

The wcsrtombs function converts a sequence of wide characters from the array
indirectly pointed to bysrc into a sequence of corresponding multibyte characters,
beginning in the conversion state described by the object pointedo®. iydst is not a

null pointer, the converted characters are then stored into the array pointedisb .by
Conversion continues up to and including a terminating null wide character, which is also
stored. Conversion stops earlier in two cases: when a code is reached that does not
correspond to a valid multibyte character, ordgt is not a null pointer) when the next
multibyte character would exceed the limitlef total bytes to be stored into the array
pointed to bydst . Each conversion takes place as if by a call to wletomb
function?78)

If dst is not a null pointer, the pointer object pointed tosby is assigned either a null
pointer (if conversion stopped due to reaching a terminating null wide character) or the
address just past the last wide character converted (if any). If conversion stopped due to
reaching a terminating null wide character, the resulting state described is the initial
conversion state.

Returns

If conversion stops because a code is reached that does not correspond to a valid
multibyte character, an encoding error occurs:viieertombs function stores the value

of the macroEILSEQ in errno and returnsg(size_t)-1 ; the conversion state is
undefined. Otherwise, it returns the number of bytes in the resulting multibyte character
sequence, not including the terminating null (if any).

278) If conversion stops because a terminating null wide character has been reached, the bytes stored
include those necessary to reach the initial shift state immediately before the null byte.

7.246.4.1 Library 7.24.6.4.2

WG14/N843 Committee Draft — August 3, 1998 381

7.25 Wide-character classification and mapping utilitieswctype.h>

7.25.1 Introduction
The headexwctype.h> declares three data types, one macro, and many funéfins.
The types declared are

wint_t

which is an integer type unchanged by default argument promotions that can hold any
value corresponding to members of the extended character set, as well as at least one
value that does not correspond to any member of the extended character $éE(dee
below)?28%

wctrans_t

which is a scalar type that can hold values which represent locale-specific character
mappings; and

wctype_t

which is a scalar type that can hold values which represent locale-specific character
classifications.

The macro defined is
WEOF

which expands to a constant expression of typet t whose value does not
correspond to any member of the extended charact&#'$ktis accepted (and returned)

by several functions in this subclause to indieatd-of-file that is, no more input from a
stream. Itis also used as a wide-character value that does not correspond to any member
of the extended character set.

The functions declared are grouped as follows:

— Functions that provide wide-character classification;

— Extensible functions that provide wide-character classification;
— Functions that provide wide-character case mapping;

— Extensible functions that provide wide-character mapping.

For all functions described in this subclause that accept an argument winye , the
value shall be representable aschar_t or shall equal the value of the masticOFIf
this argument has any other value, the behavior is undefined.

279) See “future library directions” (7.26.13).
280)wchar_t andwint_t can be the same integer type.

281) The value of the macWWEOFMnay differ from that oEOFand need not be negative.

7.25 Library 7.25.1

382 Committee Draft — August 3, 1998 WG14/N843

The behavior of these functions is affected by ltfie CTYPEcategory of the current
locale.

7.25.2 Wide-character classification utilities

The header<wctype.h> declares several functions useful for classifying wide
characters.

The termprinting wide characterrefers to a member of a locale-specific set of wide
characters, each of which occupies at least one printing position on a display device. The
termcontrol wide characterefers to a member of a locale-specific set of wide characters
that are not printing wide characters.

7.25.2.1 Wide-character classification functions

The functions in this subclause return nonzero (true) if and only if the value of the
argumentvc conforms to that in the description of the function.

Except for theiswgraph andiswpunct functions with respect to printing, white-
space, wide characters other than , each of the following functions returns true for
each wide character that corresponds (as if by a call tedtod function) to a character
(byte) for which the corresponding character testing function from 7.4.1 returrf§3rue.

Forward references: thewctob function (7.24.6.1.2).
7.25.2.1.1 Theswalnum function
Synopsis

#include <wctype.h>
int iswalnum(wint_t wc);

Description

The iswalnum function tests for any wide character for whigwalpha or
iswdigit is true.

282) For example, if the expressioisalpha(wctob(wc)) evaluates to true, then the call
iswalpha(wc) also returns true. But, if the expressiegraph(wctob(wc)) evaluates to true
(which cannot occur fowc == L' * of course), then eithéswgraph(wc) oriswprint(wc)

&& iswspace(wc) s true, but not both.

7.25.1 Library 7.25.2.1.1

WG14/N843 Committee Draft — August 3, 1998 383

7.25.2.1.2 Theswalpha function
Synopsis

#include <wctype.h>
int iswalpha(wint_t wc);

Description

The iswalpha function tests for any wide character for whigwupper or
iswlower is true, or any wide character that is one of a locale-specific set of alphabetic

wide characters for which noneisfvcntrl |, iswdigit , iswpunct , oriswspace
is true?83)

7.25.2.1.3 Theswcntrl function

Synopsis

#include <wctype.h>
int iswentrl(wint_t wc);

Description

Theiswentrl function tests for any control wide character.
7.25.2.1.4 Theswdigit function

Synopsis

#include <wctype.h>
int iswdigit(wint_t wc);

Description

Theiswdigit function tests for any wide character that corresponds to a decimal-digit
character (as defined in 5.2.1).

283) The functiongswlower andiswupper test true or false separately for each of these additional
wide characters; all four combinations are possible.

725211 Library 7.25.2.1.4

384 Committee Draft — August 3, 1998 WG14/N843

7.25.2.1.5 Theswgraph function
Synopsis

#include <wctype.h>
int iswgraph(wint_t wc);

Description

Theiswgraph function tests for any wide character for whistvprint is true and

iswspace is false?®

7.25.2.1.6 Theswlower function
Synopsis

#include <wctype.h>
int iswlower(wint_t wc);

Description

Theiswlower function tests for any wide character that corresponds to a lowercase
letter or is one of a locale-specific set of wide characters for which nosearitrl

iswdigit ,iswpunct , oriswspace is true.
7.25.2.1.7 Theswprint function
Synopsis

#include <wctype.h>
int iswprint(wint_t wc);

Description
Theiswprint function tests for any printing wide character.

284) Note that the behavior of thiewgraph and iswpunct functions may differ from their
corresponding functions in 7.4.1 with respect to printing, white-space, basic execution characters other
than’ ’

7.25.2.1.4 Library 7.25.2.1.7

WG14/N843 Committee Draft — August 3, 1998 385

7.25.2.1.8 Theswpunct function
Synopsis

#include <wctype.h>
int iswpunct(wint_t wc);

Description

Theiswpunct function tests for any printing wide character that is one of a locale-

specific set of punctuation wide characters for which neiiwespace noriswalnum

is true284

7.25.2.1.9 Thaeswspace function
Synopsis

#include <wctype.h>
int iswspace(wint_t wc);

Description

Theiswspace function tests for any wide character that corresponds to a locale-specific
set of white-space wide characters for which nonaseflnum , iswgraph , or
iswpunct is true.

7.25.2.1.10 Theswupper function
Synopsis

#include <wctype.h>
int iswupper(wint_t wc);

Description

Theiswupper function tests for any wide character that corresponds to an uppercase
letter or is one of a locale-specific set of wide characters for which nosearitrl
iswdigit ,iswpunct , oriswspace is true.

7.25.2.1.7 Library 7.25.2.1.10

386 Committee Draft — August 3, 1998 WG14/N843

7.25.2.1.11 Thaswxdigit function
Synopsis

#include <wctype.h>
int iswxdigit(wint_t wc);

Description

The iswxdigit function tests for any wide character that corresponds to a
hexadecimal-digit character (as defined in 6.4.4.1).

7.25.2.2 Extensible wide-character classification functions

The functionsvctype andiswctype provide extensible wide-character classification
as well as testing equivalent to that performed by the functions described in the previous
subclause (7.25.2.1).

7.25.2.2.1 Theswctype function
Synopsis

#include <wctype.h>

int iswctype(wint_t wc, wctype_t desc);
Description

The iswctype function determines whether the wide charagterhas the property
described bydesc . The current setting of theC_CTYPEcategory shall be the same as
during the call tavctype that returned the valugesc .

Each of the following expressions has a truth-value equivalent to the call to the wide-
character classification function (7.25.2.1) in the comment that follows the expression:

iswctype(wc, wctype("alnum™)) /I iswalnum(wc)
iswctype(wc, wctype("alpha™)) Il iswalpha(wc)
iswctype(wc, wetype(“"cntrl™)) Il iswentrl(wc)

iswctype(wc, wctype("digit™)) I iswdigit(wc)
iswctype(wc, wctype("graph™)) Il iswgraph(wc)

iswctype(wc, wctype("lower")) /I iswlower(wc)
iswctype(wc, wctype("print")) I iswprint(wc)
iswctype(wc, wctype("punct™)) /I iswpunct(wc)
iswctype(wc, wctype("space")) Il iswspace(wc)
iswctype(wc, wctype("upper")) Il iswupper(wc)

iswctype(wc, wctype("xdigit")) Il iswxdigit(wc)
Returns

The iswctype function returns nonzero (true) if and only if the value of the wide
charactemwc has the property described tgsc .

7.25.2.1.10 Library 7.25.2.2.1

WG14/N843 Committee Draft — August 3, 1998 387

7.25.2.2.2 Thavctype function
Synopsis

#include <wctype.h>
wctype_t wctype(const char *property);

Description

Thewctype function constructs a value with typectype t that describes a class of
wide characters identified by the string argunpgoperty

The strings listed in the description of tlssvctype function shall be valid in all
locales agproperty arguments to theictype function.

Returns

If property identifies a valid class of wide characters according toLeCTYPE
category of the current locale, thvetype function returns a nonzero value that is valid
as the second argument to thectype function; otherwise, it returns zero.

Forward references: theiswctype function (7.25.2.2.1).

7.25.3 Wide-character mapping utilities

The headexwctype.h> declares several functions useful for mapping wide characters.
7.25.3.1 Wide-character case mapping functions

7.25.3.1.1 Theowlower function

Synopsis

#include <wctype.h>
wint_t towlower(wint_t wc);

Description
Thetowlower function converts an uppercase letter to a corresponding lowercase letter.
Returns

If the argument is a wide character for whistvupper is true and there are one or
more corresponding wide characters, as specified by the current locale, for which
iswlower is true, thetowlower function returns one of the corresponding wide
characters (always the same one for any given locale); otherwise, the argument is
returned unchanged.

7.25.2.2.1 Library 7.25.3.1.1

388 Committee Draft — August 3, 1998 WG14/N843

7.25.3.1.2 Thdowupper function
Synopsis

#include <wctype.h>
wint_t towupper(wint_t wc);

Description
Thetowupper function converts a lowercase letter to a corresponding uppercase letter.
Returns

If the argument is a wide character for whistvlower is true and there are one or
more corresponding wide characters, as specified by the current locale, for which
iswupper is true, theowupper function returns one of the corresponding characters
(always the same one for any given locale); otherwise, the argument is returned
unchanged.

7.25.3.2 Extensible wide-character case mapping functions

The functionsvctrans andtowctrans provide extensible wide-character mapping as
well as case mapping equivalent to that performed by the functions described in the
previous subclause (7.25.3.1).

7.25.3.2.1 Theowctrans function
Synopsis

#include <wctype.h>

wint_t towctrans(wint_t wc, wctrans_t desc);
Description

Thetowctrans function maps the wide characi®c using the mapping described by
desc . The current setting of tHeC_CTYPEcategory shall be the same as during the call
towctrans that returned the valugesc .

Each of the following expressions behaves the same as the call to the wide-character
case-mapping function (7.25.3.1) in the comment that follows the expression:

towctrans(wc, wctrans("tolower")) /* towlower(wc) */
towctrans(wc, wctrans("toupper")) [* towupper(wc) */
Returns

Thetowctrans function returns the mapped valueved using the mapping described
by desc .

7.25.3.1.1 Library 7.25.3.2.1

WG14/N843 Committee Draft — August 3, 1998 389

7.25.3.2.2 Thewvctrans function
Synopsis

#include <wctype.h>
wctrans_t wctrans(const char *property);

Description

The wctrans function constructs a value with typectrans t that describes a
mapping between wide characters identified by the string argyrogrerty

The strings listed in the description of ttwavctrans function shall be valid in all
locales agproperty arguments to theictrans function.

Returns

If property identifies a valid mapping of wide characters according taGeCTYPE
category of the current locale, thetrans function returns a nonzero value that is valid
as the second argument to tbhe/ctrans function; otherwise, it returns zero.

7.25.3.2.1 Library 7.25.3.2.2

390 Committee Draft — August 3, 1998 WG14/N843

7.26 Future library directions

The following names are grouped under individual headers for convenience. All external
names described below are reserved no matter what headers are included by the program.

7.26.1 Complex arithmeticccomplex.h>
The function names

cerf cexpml clog2
cerfc clog10 cgamma
cexp2 cloglp clgamma

and the same names suffixed withor | are reserved for the functions with complex
arguments and return values.

7.26.2 Character handling<ctype.h>

Function names that begin with eitlieer or to , and a lowercase letter (possibly followed
by any combination of digits, letters, and underscore) may be added to the declarations in
the<ctype.h> header.

7.26.3 Errors<errno.h>

Macros that begin witk and a digit oiE and an uppercase letter (possibly followed by
any combination of digits, letters, and underscore) may be added to the declarations in the
<errno.h> header.

7.26.4 Format conversion of integer typesinttypes.h>

Macro names beginning witPRI or SCNfollowed by any lower case letter ¥rmay be
added to the macros defined in thettypes.h> header.

7.26.5 Localization<locale.h>

Macros that begin withhC_ and an uppercase letter (possibly followed by any
combination of digits, letters, and underscore) may be added to the definitions in the
<locale.h> header.

7.26.6 Signal handling<signal.h>

Macros that begin with eithe8IG and an uppercase letter 8iG_ and an uppercase
letter (possibly followed by any combination of digits, letters, and underscore) may be
added to the definitions in tkasignal.h> header.

7.26 Library 7.26.6

WG14/N843 Committee Draft — August 3, 1998 391

7.26.7 Boolean type and valuesstdbool.h>

The ability to undefine and perhaps then redefine the miagobs true , andfalse is
an obsolescent feature.

7.26.8 Integer types<stdint.h>

Type names beginning witht oruint and ending with t may be added to the types
defined in the<stdint.h> header. Macro names beginning withT or UINT and
ending with_MAXor _MIN, may be added to the macros defined in<siglint.h>
header.

7.26.9 Input/output <stdio.h>

Lowercase letters may be added to the conversion specifiers and length modifiers in
fprintf andfscanf . Other characters may be used in extensions.

The use olingetc on a binary stream where the file position indicator is zero prior to
the call is an obsolescent feature.

7.26.10 General utilities<stdlib.h>

Function names that begin wigtr and a lowercase letter (possibly followed by any
combination of digits, letters, and underscore) may be added to the declarations in the
<stdlib.h> header.

7.26.11 String handling<string.h>

Function names that begin widtr , mem or wcs and a lowercase letter (possibly
followed by any combination of digits, letters, and underscore) may be added to the
declarations in thestring.h> header.

7.26.12 Extended multibyte and wide-character utilitiesxwchar.h>

Function names that begin witics and a lowercase letter (possibly followed by any
combination of digits, letters, and underscore) may be added to the declarations in the
<wchar.h> header.

Lowercase letters may be added to the conversion specifiers and length modifiers in
fwprintf andfwscanf . Other characters may be used in extensions.

7.26.13 Wide-character classification and mapping utilities
<wctype.h>

Function names that begin with or to and a lowercase letter (possibly followed by
any combination of digits, letters, and underscore) may be added to the declarations in the
<wctype.h> header.

7.26.7 Library 7.26.13

392 Committee Draft — August 3, 1998 WG14/N843

Annex A
(informative)

Language syntax summary

NOTE The notation is described in the introduction to clause 6 (Language).
A.1 Lexical grammar

A.1.1 Lexical elements

(6.4) token:
keyword
identifier
constant
string-literal
punctuator

(6.4) preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator
eachuniversal-character-namhat cannot be one of the above
each non-white-space character that cannot be one of the above

A.1.2 Keywords
(6.4.1) keyword: one of

auto enum restrict unsigned
break extern return void

case float short volatile
char for signed while

const goto sizeof _Bool
continue if static _Complex
default inline struct _Imaginary
do int switch

double long typedef

else register union

A Language syntax summary A.l.2

WG14/N843 Committee Draft — August 3, 1998 393

A.1.3 ldentifiers

(6.4.2) identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit
(6.4.2)identifier-nondigit:
nondigit
universal-character-name
other implementation-defined characters

(6.4.2) nondigit: one of
universal-character-name

a b c d e f g h i j k I m
n o p qr s t uv w x y z
A B C D EF G H I J K L M
N O P Q R S TWUV W X Y Z

(6.4.2) digit: one of
0O 1. 2 3 4 5 6 7 8 9

A.1.4 Universal character names

(6.4.3) universal-character-name:
\u hex-quad
\U hex-quad hex-quad

(6.4.3) hex-quad:
hexadecimal-digit hexadecimal-digit
hexadecimal-digit hexadecimal-digit

A.1.5 Constants

(6.4.4) constant:
integer-constant
floating-constant
enumeration-constant
character-constant

(6.4.4.1) integer-constant:
decimal-constant integer-sufgigt
octal-constant integer-suf[)ixt
hexadecimal-constant integer-sugg){
(6.4.4.1) decimal-constant:
nonzero-digit
decimal-constant digit

A.13 Language syntax summary A.l15

394 Committee Draft — August 3, 1998 WG14/N843

(6.4.4.1) octal-constant:
0
octal-constant octal-digit

(6.4.4.1) hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit
hexadecimal-constant hexadecimal-digit

(6.4.4.1) hexadecimal-prefix:one of
Ox OX

(6.4.4.1) nonzero-digit: one of
1 2 3 4 5 6 7 8 9

(6.4.4.1) octal-digit: one of
0O 1 2 3 4 5 6 7

(6.4.4.1) hexadecimal-digit:one of
o 1 2 3 4 5 6 7 8 9
a b ¢ d e f
A B C D E F

(6.4.4.1) integer-suffix:
unsigned-suffix long-suffj
unsigned-suffix long-long-suffix
long-suffix unsigned-suffix
long-long-suffix unsigned-sufgi&

(6.4.4.1) unsigned-suffix:one of
u U

(6.4.4.1) long-suffix: one of
| L

(6.4.4.1) long-long-suffix: one of
I LL

(6.4.4.2) floating-constant:
decimal-floating-constant
hexadecimal-floating-constant

(6.4.4.2) decimal-floating-constant:
fractional-constant exponent-p r: floating- suff|>6
digit-sequence exponent-part floating- s%f&x

(6.4.4.2) hexadecimal-floating-constant:
hexadecimal-prefix hexadecimal-fractional-constant
binary-exponent-part floating- su |x
hexadecimal-prefix hexadecimal-digit- seauence
binary-exponent-part floating- sufgé

A.15 Language syntax summary A.15

WG14/N843

Committee Draft — August 3, 1998

(6.4.4.2) fractional-constant:

digit-sequenc

digit-sequence
digit-sequenc(gpt

(6.4.4.2) exponent-part:

e signopt digit-sequence
E signOlot digit-sequence

(6.4.4.2) sign: one of

+ -

(6.4.4.2) digit-sequence:

digit
digit-sequence digit

(6.4.4.2) hexadecimal-fractional-constant:

hexadecimal-digit-sequen
hexadecimal-digit-sequence
hexadecimal-digit-sequence

(6.4.4.2) binary-exponent-part:

p signo i digit-sequence
P signOlot digit-sequence

(6.4.4.2) hexadecimal-digit-sequence:

hexadecimal-digit
hexadecimal-digit-sequence hexadecimal-digit

(6.4.4.2) floating-suffix: one of

f I F L

(6.4.4.3) enumeration-constant:

identifier

(6.4.4.4) character-constant:

' c-char-sequence
L’ c-char-sequence

(6.4.4.4) c-char-sequence:

c-char
c-char-sequence c-char

(6.4.4.4) c-char:

A.1l5

any member of the source character set except
the single-quoté, backslash , or new-line character
escape-sequence

Language syntax summary

395

A.l15

396 Committee Draft — August 3, 1998 WG14/N843

(6.4.4.4) escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

(6.4.4.4) simple-escape-sequencene of
L S AR\
\a \b \ff \n \r \t W

(6.4.4.4) octal-escape-sequence:

\ octal-digit

\ octal-digit octal-digit

\ octal-digit octal-digit octal-digit
(6.4.4.4) hexadecimal-escape-sequence:

\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

A.1.6 String literals

(6.4.5) string-literal:
" s-char-sequenc0 t
L" s-char-sequen% t

(6.4.5) s-char-sequence:
s-char
s-char-sequence s-char

(6.4.5) s-char:
any member of the source character set except
the double-quote, backslash , or new-line character
escape-sequence

A.1.7 Punctuators
(6.4.6) punctuator: one of

1 ¢y £}y . =
*+_

++ - &

I % << > < > <= >= == 1= " | && ||
? o0

= *= = 0%= += = <<= >>= &= "= |:

, #H ##

< > <% %> %: %:%:

A.15 Language syntax summary A.l.7

WG14/N843 Committee Draft — August 3, 1998 397

A.1.8 Header names

(6.4.7) header-name:
<h-char-sequence
" g-char-sequence

(6.4.7) h-char-sequence:
h-char
h-char-sequence h-char

(6.4.7) h-char:
any member of the source character set except
the new-line character arxd

(6.4.7) g-char-sequence:
g-char
g-char-sequence q-char

(6.4.7) g-char:
any member of the source character set except
the new-line character arid

A.1.9 Preprocessing numbers

(6.4.8) pp-number:
digit
. digit
pp-number digit
pp-number identifier-nondigit
pp-numbere sign
pp-number E sign
pp-numberp sign
pp-numberP sign
pp-number.

A.2 Phrase structure grammar
A.2.1 Expressions

(6.5.1) primary-expression:
identifier
constant
string-literal
(expressiorn)

A.1.8 Language syntax summary A2.1

398 Committee Draft — August 3, 1998 WG14/N843

(6.5.2) postfix-expression:
primary-expression
postfix-expressior] expression
postfix-expression argument-expression-l>)
postfix-expression identifier
postfix-expression> identifier
postfix-expression++
postfix-expression-
(type-namg {initializer-list }
(type-name) { initializer-list , }

(6.5.2) argument-expression-list:
assignment-expression
argument-expression-list assignment-expression

(6.5.3) unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

(6.5.3) unary-operator: one of
& * + - 7 |

(6.5.4) cast-expression:
unary-expression
(type-name) cast-expression

(6.5.5) multiplicative-expression:
cast-expression
multiplicative-expressioh cast-expression
multiplicative-expressioh cast-expression
multiplicative-expressioProcast-expression

(6.5.6) additive-expression:
multiplicative-expression
additive-expressiosr multiplicative-expression
additive-expression multiplicative-expression

(6.5.7) shift-expression:
additive-expression
shift-expressior< additive-expression
shift-expressior> additive-expression

A2.1l Language syntax summary A2.1l

WG14/N843 Committee Draft — August 3, 1998 399

(6.5.8) relational-expression:
shift-expression
relational-expressio’ shift-expression
relational-expressiom shift-expression
relational-expressior= shift-expression
relational-expressiorr= shift-expression

(6.5.9) equality-expression:
relational-expression
equality-expressior = relational-expression
equality-expressiotr relational-expression

(6.5.10) AND-expression:
equality-expression
AND-expressiol. equality-expression

(6.5.11) exclusive-OR-expression:
AND-expression
exclusive-OR-expressiGnAND-expression

(6.5.12) inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expressidnexclusive-OR-expression

(6.5.13) logical-AND-expression:
inclusive-OR-expression
logical-AND-expressio&&inclusive-OR-expression

(6.5.14) logical-OR-expression:
logical-AND-expression
logical-OR-expressiof} logical-AND-expression

(6.5.15) conditional-expression:

logical-OR-expression

logical-OR-expressiofd expression conditional-expression
(6.5.16) assignment-expression:

conditional-expression
unary-expression assignment-operator assignment-expression

(6.5.16) assignment-operatorone of
= *= [= 0p= += = <<= >>= &= = |:

(6.5.17) expression:
assignment-expression
expression assignment-expression

(6.6) constant-expression:
conditional-expression

A21 Language syntax summary A21

400 Committee Draft — August 3, 1998 WG14/N843

A.2.2 Declarations

(6.7) declaration:
declaration-specifiers init-declarator-ligﬁt;

(6.7) declaration-specifiers:
storage-class-specifier declaration-specifj)%rts
type-specifier declaration-specifig:?
type-qualifier declaration-specifieof
function-specifier declaration-spe |¥i8|ro§

(6.7) init-declarator-list:
init-declarator
init-declarator-list , init-declarator

(6.7) init-declarator:
declarator
declarator = initializer

(6.7.1) storage-class-specifier:
typedef
extern
static
auto
register

(6.7.2) type-specifier:
void
char
short
int
long
float
double
signed
unsigned
_Bool
_Complex
_Imaginary
struct-or-union-specifier
enum-specifier
typedef-name

(6.7.2.1) struct-or-union-specifier:
struct-or-union identifie(;pt{ struct-declaration-list}
struct-or-union identifier

A.2.2 Language syntax summary A.2.2

WG14/N843 Committee Draft — August 3, 1998

(6.7.2.1) struct-or-union:
struct
union

(6.7.2.1) struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

(6.7.2.1) struct-declaration:
specifier-qualifier-list struct-declarator-list

(6.7.2.1) specifier-qualifier-list:
type-specifier specifier-qualifier-list
type-qualifier specifier-qualifier-lig t

(6.7.2.1) struct-declarator-list:
struct-declarator
struct-declarator-list, struct-declarator

(6.7.2.1) struct-declarator:
declarator

declarato% constant-expression

pt -

(6.7.2.2) enum-specifier:
enum identifier, . { enumerator-list}
enum identifier_ . { enumerator-list, }

enum identifier

(6.7.2.2) enumerator-list:
enumerator
enumerator-list, enumerator

(6.7.2.2) enumerator:
enumeration-constant
enumeration-constant constant-expression

(6.7.3) type-qualifier:
const

restrict
volatile

(6.7.4) function-specifier:
inline
(6.7.5) declarator:
pointerO ot direct-declarator

A.2.2 Language syntax summary

401

A.2.2

402 Committee Draft — August 3, 1998

(6.7.5) direct-declarator:
identifier
(declarator)
direct-declarator [assignment-expressig&]
direct-declarator [*]

direct-declarator (parameter-type-list)
direct-declarator (identifier-lis,tOlot)

(6.7.5) pointer:
* type-qualifier-lis ot
* type-qualifier-lisgpt pointer

(6.7.5) type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

(6.7.5) parameter-type-list:
parameter-list
parameter-list, ...

(6.7.5) parameter-list:
parameter-declaration
parameter-list, parameter-declaration

(6.7.5) parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declarag%rt'

(6.7.5) identifier-list:
identifier
identifier-list , identifier
(6.7.6) type-name:
specifier-qualifier-list abstract-declarat(g)lgt

(6.7.6) abstract-declarator:
pointer
pointerO ot direct-abstract-declarator

(6.7.6) direct-abstract-declarator:
(abstract-declarator)

direct-abstract-declarator . [assignment-expre